
5920 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 34, 2025

Fast Video Recoloring via Curve-Based Palettes
Zheng-Jun Du , Member, IEEE, Jia-Wei Zhou , Kang Li, Jian-Yu Hao, Zi-Kang Huang , and Kun Xu

Abstract—Color grading, as a crucial step in film post-
production, plays an important role in emotional expression
and artistic enhancement. Recently, a geometric palette-based
approach to video recoloring has been introduced with impressive
results. It offers an intuitive interface that allows users to alter the
color of a video by manipulating a limited set of representative
colors. However, this method has two primary limitations. Firstly,
palette extraction is computationally expensive, often taking more
than one hour to generate palettes even for medium-length
videos, which significantly limits the practical application of color
editing for longer videos. Secondly, the palette colors are less
representative, and some primary colors may be omitted from
the resulting palettes during topological simplification, making
it less intuitive in color editing. To overcome these limitations,
in this paper, we propose a novel approach to video recoloring.
The core of our method is a set of Bézier curves that connect
the dominant colors throughout the input video. By slicing these
Bézier curves in RGBT space, per-frame palette can be naturally
derived. During recoloring, users can select several frames of
interest and modify their corresponding palettes to change the
color of the video. Our method is simple and intuitive, enabling
compelling time-varying recoloring results. Compared to existing
methods, our approach is more efficient in palette extraction and
can effectively capture the dominant colors of the video. Extensive
experiments demonstrate the effectiveness of our method.

Index Terms—Video recoloring, palette, Bézier curves, color
editing.

I. INTRODUCTION

V IDEO recoloring aims to adjust or enhance the colors of
a video to achieve a particular visual effect or feeling. It

is widely used in film production, advertising, art creation,
short video editing, etc. While some commercial software
(e.g., Adobe Premiere, DaVinci Resolve, and Lightworks)
provides strong support for video color editing, they usually
require the user to learn a great deal of specialized knowledge
and are therefore less user-friendly. In recent years, palette-
based approaches [1], [2], [3], [4], [5], [6], [7], [8], [9], [10],
[11], [12], [13], [14] have made significant progress in image
recoloring, and have been successfully extended to video

Received 7 November 2024; revised 19 June 2025; accepted 13 August
2025. Date of publication 16 September 2025; date of current version
19 September 2025. This work was supported in part by the National Natural
Science Foundation of China under Project 62562052 and in part by the Youth
Program of the Natural Science Foundation of Qinghai Province under Project
2023-ZJ-951Q. The associate editor coordinating the review of this article and
approving it for publication was Prof. Rafal K. Mantiuk. (Zheng-Jun Du, Jia-
Wei Zhou, and Kang Li contributed equally to this work.) (Corresponding
author: Kun Xu.)

Zheng-Jun Du, Jia-Wei Zhou, Kang Li, Jian-Yu Hao, and Zi-Kang Huang
are with the School of Computer Technology and Application, Qinghai
University, Xining 810016, China.

Kun Xu is with the Key Laboratory of Pervasive Computing, Ministry
of Education, and the Department of Computer Science and Technology,
Tsinghua University, Beijing 100084, China (e-mail: xukun@tsinghua.edu.cn).

This article has supplementary downloadable material available at
https://doi.org/10.1109/TIP.2025.3607584, provided by the authors.

Digital Object Identifier 10.1109/TIP.2025.3607584

scenarios by Du et al. [15] with impressive results. Compared
to commercial tools, palette-based video recoloring is simpler
and more intuitive, allowing users to adjust the colors of a
video by manipulating a small set of representative colors.

Du et al. [15] projected the input video into the RGBT
space and treated its pixels as a 4D point set. They then
generated a geometric structure, referred to as a skew polytope,
to represent the color palette of the video. Finally, Mean Value
Coordinates (MVC) interpolation was employed to transfer
palette colors’ variations to the entire video. As a pioneering
work in palette-based video recoloring, their method offers
an intuitive interface and enables natural, artifact-free time-
varying recoloring via simple interactions. However, this
approach has two primary limitations. First, palette extraction
is a time-consuming process. The initial skew polytope gen-
erated for a video has a complex topological structure with
thousands of vertices and edges, making it unsuitable for direct
use as a palette. Thus, significant time is required to iteratively
refine its topology. Second, the vertices, i.e., the palette colors,
are far away from the video pixels after simplifying the skew
polytope, making the palette colors lack representativeness. As
a result, color editing becomes less intuitive and unpredictable.

To overcome the aforementioned limitations, we propose a
novel curve-based approach for video recoloring. Our method
consists of two primary steps: palette extraction and video
recoloring. In the first step, we initially extract frame-wise
representative colors through clustering. Next, we fit a set of
Bézier curves [16] in RGBT space to connect these dominant
colors across video frames, to represent the palette of the input
video. In the second step, to achieve better local control and
more nuanced color editing, we allow users to recolor the input
video by directly adjusting local frame palettes. To this end,
we first slice these Bézier curves in each frame time to obtain
per-frame color palettes. After users modify the color palettes
of specific frames, we refit these Bézier curves to propagate
those color changes to the entire video.

We have demonstrated the effectiveness of our
method on a wide range of examples. In comparison
with existing approaches, we made the following
contributions:
• We propose a novel geometric structure, i.e., a set of

Bézier curves, to represent the color palette of a video.
This structure effectively captures the dominant colors
of each frame and connects them to form a set of
smooth curves, resulting in better temporal consistency
and natural, time-varying recoloring results.

• Our curve-based video palette can be extracted much
more efficiently. Compared to existing methods, our
palette extraction algorithm achieves a 400× speedup due
to avoiding a large number of iterations.

1941-0042 © 2025 IEEE. All rights reserved, including rights for text and data mining, and training of artificial intelligence and
similar technologies. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Tsinghua University. Downloaded on September 24,2025 at 01:25:44 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0009-0001-7060-9773
https://orcid.org/0009-0000-6623-0050
https://orcid.org/0009-0002-5485-8451
https://orcid.org/0000-0002-2671-4170

DU et al.: FAST VIDEO RECOLORING VIA CURVE-BASED PALETTES 5921

• We offer a new interaction style that allows users to
recolor videos by directly modifying the color palettes of
specific frames, thus significantly improving local control
during video recoloring.

The remainder of the paper is structured as follows. First, we
review some relevant work. Then, we describe the proposed
algorithm in detail. Next, we provide extensive experiments
to demonstrate the effectiveness of our method. Finally, we
offer a concise conclusion and discuss the limitations of the
proposed method.

II. RELATED WORK

In this section, we first review some related works on
palette-based image recoloring, followed by a brief introduc-
tion of the palette-based video recoloring approach introduced
by Du et al. [15].

Palette-based approaches for image recoloring have become
increasingly popular in recent years. In these approaches, a
color palette [17], [18], [19], [20], [21] is typically defined as a
small set of dominant colors that reflect the primary color dis-
tribution of the input image. Once the color palette of an image
is obtained, a predefined color transfer function is employed
to map the palette colors’ variation to the whole image. After
years of advancement, many palette-based image recoloring
techniques have been proposed, achieving remarkable progress
in color editing.

The first palette-based image recoloring method was pro-
posed by Chang et al. [1]. They first extract the color
palette using K-means clustering. Subsequently, a Radial Basis
Function (RBF) based algorithm is applied to propagate the
variations of the palette colors to the whole image. Zhang
et al. [2] adopted a similar method for palette extraction, but
encoded the color of any pixel in the input image as a weighted
sum of the palette colors with an energy optimization method.
In recoloring, the weights are fixed, and users modify the
palette colors to adjust the appearance of the input image.
Tan et al. [3] first proposed a geometric method to build color
palettes. Specifically, they treat the input image as a point set
in RGB space, calculate its convex hull, and use whose vertices
as the color palette of the input image. Next, they decompose
the input image into a set of ordered layers that can reconstruct
the input by alpha blending. Finally, users adjust the color
of the image by modifying the palette or the corresponding
layers. Later, to improve computational efficiency and achieve
better spatial consistency in recoloring, Tan et al. [4], [6]
extended the approach of Tan et al. [3] to the RGBXY space.
Although convex-hull-based methods are intuitive and efficient
for image recoloring, the palette colors are less representative
because the convex hull vertices are distant from image
pixels, making recoloring less predictable. To address this
problem, Wang et al. [7] proposed a geometric approach to
refine the positions of convex hull vertices, improving the
representativeness of the palette colors. Another drawback
of convex hull-based methods is that they often introduce
reconstruction errors. To address this issue, Grogan and Smolic
[8] proposed a novel geometric technique for palette extraction
and layer decomposition that produced layers with uniform
color and faithfully maintained the colors in the input image,

and achieved accurate reconstruction. Aksoy et al. [9] pro-
posed a novel scheme to decompose the input image into a
set of soft color segments, where the colors in each segment
conform to a Gaussian distribution. In recoloring, users adjust
the colors of the image by manipulating these soft segments.
Zhang et al. [10] designed a novel blind color separation model
to simultaneously extract the color palette and calculate the
mixing weights, enabling more faithful palette-based recol-
oring. Unlike previous methods, Chao et al. [12] introduced
“ColorfulCurves”, which generates a hue-chroma palette and
the corresponding tone curves to support sparse, per-palette
color control of lightness over the image. To achieve better
local control, Chao et al. [13] proposed a hierarchical palette-
based approach to fulfill arbitrary image-space constraints
in recoloring, and it automatically divides the image into
semantic subregions to achieve color constraints using local
palettes when constraints cannot be satisfied. In addition, some
researchers proposed a new type of palette, the Playful Palette
[22], [23], which provides artists with an interactive parametric
color mixer.

In recent years, with advances in deep learning, some neural
network-based approaches to image recoloring have been pro-
posed. For example, Cho et al. [24] introduced “PaletteNet”,
which uses a content-aware method to match a user-selected
color palette with an input image, but only supports a fixed
palette size. Akimoto et al. [25] used a U-Net to calculate
mixing weights of an image relative to its corresponding color
palette, but often leads to unexpected global color changes
during recoloring. Some other works [26], [27] extended
palette-based methods to color editing in NeRF-represented
scenes with impressive results.

Du et al. [15] extended geometric palette-based image recol-
oring techniques [3], [4], [7] to video scenario and proposed
the first geometric palette-based approach to video recoloring.
They first project the input video into RGBT space, and treat
its pixels as a 4D (RGB color and a time) point set. Next,
they build an initial 4D skew polytope by gluing adjacent
frames’ RGB convex hulls. Typically, the initial skew polytope
has a complex topology with thousands of vertices and edges,
making it unsuitable for direct use as a palette. So, they further
perform block merging, redundant vertices removing, and ver-
tex refining, respectively, to obtain a simplified skew polytope,
and whose vertices serve as the video palette. In recoloring,
Mean Value Coordinates [28] interpolation is employed to
transfer the palette’s color variation to the whole video.
Their method provides an intuitive GUI for color editing, and
achieves natural, time-varying recoloring results. However, this
method has two primary limitations. First, it is time-consuming
in palette construction, as it involves numerous iterations in
block merging, vertex removal, and vertex refinement. This
severely limits its practical use for longer videos. Second,
the palette colors are less representative, as they are far from
the video pixels after simplification, making color editing less
intuitive.

III. MOTIVATION

Our goal is to generate a palette from a given video
that enables simple, natural, and time-varying recoloring. To

Authorized licensed use limited to: Tsinghua University. Downloaded on September 24,2025 at 01:25:44 UTC from IEEE Xplore. Restrictions apply.

5922 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 34, 2025

accomplish this, the extracted palette for a video should meet
four criteria: (1) The palette should be capable of capturing
the dominant colors in each frame, allowing users to easily
select these colors to edit the video. (2) Users should be able
to generate time-varying effects, for example, converting a
video featuring a forest in the fall into a forest that fades
from spring to fall. (3) The palette should maintain good
temporal consistency between adjacent frames, ensuring a
smooth gradient of colors over time. (4) Palette extraction and
color editing should be as efficient as possible.

To meet the criteria mentioned above, Du et al. [15] pro-
posed to use a 4D skew polytope to represent the color palette
of a video. However, the construction process of the skew
polytope is computationally expensive, necessitating numerous
iterations to simplify the initial skew polytope with complex
topological structures. Furthermore, the resulting palette colors
may be less representative as the vertices gradually move away
from the video pixels during the simplification process.

To address these issues, we seek a novel geometric structure,
i.e., a set of Bézier curves, to represent the color palette of
a video. As a widely used tool in Computer-Aided Design
(CAD) and computer graphics, the Bézier curve is highly
suitable for our task. Firstly, compared to the skew polytope,
the Bézier curve has a simpler topology and can be fitted
more efficiently. Secondly, each fitted Bézier curve connects
the dominant colors that smoothly transition over time, making
it more representative than those from existing methods.
Lastly, the Bézier curve has excellent continuity, ensuring good
temporal consistency between adjacent frames. This attribute
is particularly beneficial for producing smooth, time-varying
recoloring results.

IV. METHOD

A. Curve-Based Video Palettes

In this subsection, we define our curve-based video palette,
the slicing operator, and introduce the interaction style of our
approach to video recoloring.

1) Definition: For a video I with n frames, in this paper,
we define its color palette Z as a set of Bézier curves in RGBT
space. Specifically, the i-th Bézier curve is defined as:

Zi(τ) =

k−1X
j=0

V j
i B j,k(τ). (1)

Where k denotes the number of control points, V j
i denotes the

j-th control point of Zi, τ ∈ [0, 1] is a parameter, and B j,k(τ)
is the Bernstein basis function [29]:

B j,k(τ) =

k
j

!
τ j(1 − τ)k− j. (2)

2) Slicing: Once the Bézier curve-based video palette is
generated, any frame j’s color palette P j can be naturally
obtained by slicing the video palette i.e., a set of Bézier curves
with a hyper-plane t =

j
n−1 in RGBT space:

P j = Slice(Z, j) =

m−1[
i=0

�
Zi

�
j

n − 1

��
. (3)

Where m is the number of Bézier curves. For the sake of
description, a frame’s color palette is also referred to as the
frame palette.

3) Interaction Style: In the approach of Du et al. [15], the
user recolors a video by modifying its global palette colors.
Although this approach is intuitive, it does not support user-
specific editing on local frames. To achieve better local control
during video recoloring, we allow the user to recolor a video
by directly adjusting the color palettes of frames of interest.

To smoothly propagate local frames’ color palette changes
to the rest frames, we refit a set of Bézier curves according to
the edited frame palettes, and then get the propagated frame
palettes by slicing the refitted Bézier curves at each frame time.
Finally, each frame is recolored with frame palettes before
and after editing. Thanks to the superior continuity of Bézier
curves, our method can easily generate videos with smooth
color transition effects.

In general, our Bézier curve-based video palette offers
more flexible interaction and can produce smoother recoloring
results than existing methods.

B. Overview

Our goal is two-fold. First, we want to build a set of Bézier
curves that connect the representative colors in each video
frame, to represent the color palette of an input video. Second,
to achieve better local control in color editing, we allow users
to recolor a video by directly modifying the color palettes of
specific frames, rather than altering the global video palette. To
this end, we propose a two-stage approach to video recoloring.

(1) Video palette extraction. We first extract the rep-
resentative colors from each frame to build several
color-transition sequences. We then fit a set of Bézier
curves in RGBT space, with each curve connecting a
sequence of dominant colors that smoothly transition
over time, forming the color palette of the input video.
See Sec. IV-C for more details.

(2) Video recoloring. After users make edits to the color
palettes of specific frames, we first refit a set of Bézier
curves to propagate the variations of local frame palettes
to the remaining frames. We then recolor all frames
based on their color palettes before and after editing.
See Sec. IV-D for more details.

The full pipeline of our method is illustrated in Fig. 1.

C. Video Palette Extraction

Our video palette extraction algorithm takes a video I with n
frames as input and outputs m Bézier curves {Z0,Z1, · · · ,Zm−1}

as the color palette of the input video. To build such a video
palette, we first estimate the number m. We then extract
dominant colors from each frame to build m time-varying
color sequences. Finally, we fit m Bézier curves over these
color sequences to generate the color palette.

1) Estimating the Number of Bézier Curves: Here, we adopt
a simple scheme to automatically estimate the value of m.
Specifically, we first uniformly sample a frame sequence by
selecting one frame every 5 frames in the video, and take
the average number of dominant colors across these sampled

Authorized licensed use limited to: Tsinghua University. Downloaded on September 24,2025 at 01:25:44 UTC from IEEE Xplore. Restrictions apply.

DU et al.: FAST VIDEO RECOLORING VIA CURVE-BASED PALETTES 5923

Fig. 1. The pipeline of our approach. Our method consists of two primary stages: video palette extraction and video recoloring. In stage 1, we first estimate
the number of Bézier curves. Then, we extract representative colors in each frame to create a set of color transition sequences. Finally, we fit a Bézier curve
for each sequence, which collectively forms the color palette of the input video. Meanwhile, each frame’s color palette can be naturally obtained by slicing
the Bézier curves. In stage 2, we begin by refitting a new set of Bézier curves according to users edits on specific frames’ color palettes, and then recolor
each frame according to its frame palettes before and after editing. Our method is efficient and can generate natural, smooth, and time-varying recoloring
results. In this example, the user modified the color palettes of the 1st, 200th, and last frames, resulting in the flowers changing to purple at the beginning,
the trees turning lush green, and eventually fading to yellow towards the end.

frames as the value of m. For each sampled frame, the
dominant colors are obtained as follows.

(1) Segment the frame into superpixels (denoted as S) using
SLIC [30].

(2) For any superpixel Si, we use the centroid Ci as its
representative color, and assign Ci a saliency weight θi,
which is initialized to the pixel count in Si.

(3) Select the color Ci with the maximum saliency weight.
To attenuate the saliency weights of other similar colors,
the saliency weight θ j of any candidate color C j is
updated by:

θ j = (1 − exp(−d4
i, j/σ

4)) · θ j. (4)

Where di, j denotes the Euclidean distance between Ci

and C j in LAB space, and σ is a falloff (default 80).
(4) Repeat step (3) until the current maximum saliency

weight falls below a predefined threshold ε (default 4).
2) Building Time-Varying Color Sequences: After deter-

mining the number of Bézier curves, we build m time-varying
color sequences for fitting the Bézier curves.

A straightforward approach to build these sequences is to
extract the dominant color per frame with k-means clustering
independently and then perform one-to-one matching between
adjacent frames. Although intuitive, k-means clustering is
sensitive to initial values setting, it may lead to matched colors
of adjacent frames being completely different. As a result,
the fitted Bézier curves may not accurately capture the time-
varying dominant colors.

We observe that colors in adjacent frames are generally
similar and change smoothly, which implies that their cluster-

Fig. 2. Our progressive method for extracting per-frame dominant colors and
building color sequences.

ing results should also be similar. Based on this observation,
instead of performing clustering on each frame independently,
we design a progressive method to simultaneously capture per-
frame dominant colors and perform inter-frame matching.

Specifically, as shown in Fig. 2, we first perform k-means++

clustering [31] on frame 0, to generate its m dominant colors
{C0

0,C
1
0, · · · ,C

m−1
0 } (subscript and superscript denote frame and

color indices, respectively). Next, we take {C0
0,C

1
0, · · · ,C

m−1
0 }

as the initial values of K-means++ to generate frame 1’s
dominant colors {C0

1,C
1
1, · · · ,C

m−1
1 }. We repeat this process

until all frames’ dominant colors are obtained. As a result, the
dominant color Ci

j (i ∈ [0,m)) in frame j naturally corresponds
to the most similar color Ci

j+1 in frame j + 1.

Authorized licensed use limited to: Tsinghua University. Downloaded on September 24,2025 at 01:25:44 UTC from IEEE Xplore. Restrictions apply.

5924 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 34, 2025

The resulting m sequences of time-varying dominant colors
can be expressed as:

C = {Ci∈[0,m)} and Ci = {Ci
0,C

i
1, · · · ,C

i
n−1}. (5)

3) Fitting Bézier Curves: Now we fit a Bézier curve Zi for
each color sequence Ci. To encourage the fitted Bézier curve
to accurately capture the dominant colors in each sequence,
we define an energy function to assess its quality. Specifically,
the energy function is defined as:

Efit =
1
n

n−1X
j=0

Zi

�
j

n − 1

�
−Ci

j

2

. (6)

Here, j
n−1 denotes the normalized time of frame j, Zi(·) denotes

the value of Zi at that time, Ci
j denotes the extracted i-th

representative color of frame j. The purpose of this energy
function is to encourage the fitted and extracted dominant
colors in each frame to be as close as possible.

Algorithm 1 Video Palette Extraction

Now we obtain the optimal Bézier curve Zi characterized
by k control points {V0

i ,V
1
i , · · · ,V

k−1
i } (we empirically set k =

max(6, bn/30c)) by minimizing Eq. 6. By fitting Bézier curves
on all m time-varying color sequences, we construct the color
palette of the input video:

Z = {Z0,Z1, · · · ,Zm−1}. (7)

The pseudo code of our video palette extraction algorithm is
given in Algorithm 1.

D. Video Recoloring

During video recoloring, we allow users to alter local frame
palettes to recolor the input video. To smoothly propagate user
edits to other frames, we first refit the Bézier curves based on

edits to specific frame palettes. The edited frame palettes are
then obtained by slicing the refitted curves at each frame time.
At last, we employ a color transfer function to map the changes
in each frame’s palette to all pixels in that frame, achieving
time-varying video recoloring.

1) Refitting the Bézier Curves: We denote the edited frame
palettes as eP = {ePi∈F}, where F is the index set of edited
frames. Our goal is to refit a set of Bézier curves according to
user edits, propagating the palette variations from local frames
to the rest of the video. Once the Bézier curves are refitted,
each frame’s edited color palette can be obtained by slicing
the refitted curves. Benefiting from the excellent continuity
of Bézier curve, user edits on local frames can smoothly
propagate to other frames.

We design an energy function to measure the quality of the
refitted Bézier curves Z′. A suitable energy function should
take into account both the edit intention and the color trends in
the original video. Specifically, our energy function is defined
as the weighted sum of an edit intention term Eedit and a color
trends term Etrend:

Erefit = Eedit + λEtrend. (8)

Where λ is a weight parameter to balance the relative contri-
bution of these two terms, we empirically set λ = 0.1 for all
examples.

The edit term forces the refitted Bézier curves to pass
through all modified frame palettes’ colors, to satisfy users’
edit intentions. It is defined as:

Eedit =
1
|F|

X
i∈F

m−1X
j=0

Z′j

�
i

n − 1

�
− eP j

i

2

. (9)

Where Z′j is the j-th Bézier curve to be fitted, Z′j(·) denotes
the value of Z′i at the normalized time of frame i, eP j

i is the
j-th edited palette color of frame i.

The color trend term encourages the color trends (or the
shapes) of refitted Bézier curves to be as similar to the original
ones as possible. It is defined as:

Etrend =
1
n

n−1X
i=0

m−1X
j=0

∇Z′j

�
i

n − 1

�
− ∇Z j

�
i

n − 1

�

2

. (10)

Here, ∇Z j(·) and ∇Z′j(·) denote the first derivatives of
the original curve Z j and the refitted curve Z′j in frame i,
respectively.

By minimizing Eq. 8, we get the refitted Bézier curves Z′.
Any frame i’s edited color palette can be obtained via the
slicing operator i.e., P′i = Slice(Z′, i). Next, we describe per-
frame recoloring using the edited frame palettes.

2) Recoloring Per-Frame: Given an input video I, the
original frame palettes P = {Pi} and the edited frame palettes
P′ = {P′i}, our goal is to recolor each frame to obtain the
recolored video I′. To this end, we design a color transfer
function, similar to Chang et al. [1], to map the variation of
each frame palette to its all pixels. Specifically, for any pixel
Ii, j (where i is the frame index and j is the pixel index), its
edited color I′i, j is defined as:

I′i, j = Ii, j +

m−1X
k=0

wk
i, j

�
P′i,k − Pi,k

�
and

m−1X
k=0

wk
i, j = 1. (11)

Authorized licensed use limited to: Tsinghua University. Downloaded on September 24,2025 at 01:25:44 UTC from IEEE Xplore. Restrictions apply.

DU et al.: FAST VIDEO RECOLORING VIA CURVE-BASED PALETTES 5925

Here, Pi,k and P′i,k denote the k-th color in the original and
edited frame palettes Pi and P′i , wk

i, j denotes the normalized
similarity weight of Ii, j to the palette color Pi,k, defined as:

wk
i, j =

S k
�
Ii, j
�Pm−1

r=0 S k
�
Ii, j
� . (12)

Here, S k
�
Ii, j
�

is a function to measure the similarity between
Ii, j and the palette color Pi,k, it is defined as:

S k(x) =

m−1X
i=0

δk,iφ
�
x, Pi,k

�
. (13)

Here, δk,i are weight coefficients to be determined, φ
�
x, Pi,k

�
is a radial basis function which is defined as:

φ
�
x, Pi,k

�
= exp(−(x − Pi,k)2/2σ2). (14)

Here, σ is determined by calculating the mean distance of all
pairs of colors in Pi.

Eq. 13 depicts the similarity between a pixel and a palette
color. We impose the constraints: S k(x) = 1 if x = Pi,k, and
S k(x) = 0 if x is identical to any other color in Pi. This enforces
that each palette color is most similar to itself (similarity 1)
and completely dissimilar to other palette colors (similarity 0).
Based on this constraint, we can construct a linear system with
m2 equations to solve for weight coefficients δk,i. Once these
coefficients are determined, the similarity weights (Eq. 12) and
the recolored frame (Eq. 11) can be derived accordingly.

Algorithm 2 Video Recoloring

The pseudo code of the full process of video recoloring is
given in Algorithm 2.

Note that while our video palette is essentially a set of high-
degree polynomials, it does not lead to high-degree problems.
For example, modifying a local part of the Bézier curve will
not cause unpredictable global changes in its shape. This
is primarily achieved through our designed energy function,
which ensures that the fitted Bezier curve remains faithful to
the user’s editing intent while also preventing drastic changes
in its shape. Consequently, edits made to specific frames can
be smoothly, as expected, propagated to other video frames.

Fig. 3. Our video recoloring GUI. In this tool, the primary function panel
(including opening and saving videos, palette extraction, a preview slider, and
palette adjustment) is located on the left side. The input and recolored videos
are displayed side by side on the right, allowing for intuitive comparison.

V. EXPERIMENTS

We perform all experiments on a desktop computer
equipped with an Intel Core i7-11700 2.5 GHz CPU and 16
GB RAM. Our algorithm is implemented in C++ language,
without GPU acceleration.

We also developed a graphical user interface using the Qt
library to help users recolor videos. As shown in Fig. 3, users
can drag a progress bar to preview both the input and recolored
video sequences. Concurrently, the color palette of the current
frame is displayed below, allowing users to make edits to
specific frames to recolor the input video as desired.

A. Evaluation

1) Parameter ε: We first evaluate the threshold ε used to
determine the number of Bézier curves (Sec. IV-C1). We pro-
vide two examples in Fig. 4 to demonstrate the effectiveness
of our parameter settings.

Smaller values of ε typically yield more colors, but might
reduce their distinctiveness. In contrast, larger values tend to
produce fewer distinct colors, but may ignore representative
colors. For example, in the Smoke example, using a smaller
value (ε = 1) results in similar yellow colors in frame 0 and
comparable pink colors in frame 60, while a larger value (ε =

10) neglects the brown colors in frame 0 and frame 30. In
the Sea example, a smaller ε produces a similar light beige in
frame 0, whereas a larger ε fails to capture the light blue.

Overall, our default setting (ε = 4) provides a good
trade-off between the distinctiveness and representativeness
of the extracted dominant colors. We used the same set-
ting in all experiments and consistently achieved good
results.
λ]Parameter λ When refitting the Bézier curve-based video

palette (Eq. 8), the parameter λ is used to balance the relative
contribution of the edit and the trend losses. Typically, higher
values of λ encourage the refitted curves to preserve their
original shapes but might ignore user adjustments to local
frames. In contrast, lower values adhere more closely to local
edits, but may alter the rate of color transitions.

Authorized licensed use limited to: Tsinghua University. Downloaded on September 24,2025 at 01:25:44 UTC from IEEE Xplore. Restrictions apply.

5926 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 34, 2025

Fig. 4. Frame palettes generated with different values of ε. For each example, from top to bottom: a timeline, the input video sequence, the sliced frame
palettes when the threshold ε is set to 1, 4 and 10.

Fig. 5. Video recoloring results with different values of λ. For each example, from top to bottom: a timeline, the input video sequence, the recoloring results
for λ = 0, 0.1, 1, 100, and the corresponding edits applied to the frame palettes.

We test our Bézier curve refitting algorithm with different
values of λ in Fig. 5. The input video showcases the exquisite

scenery of a forest painted in the rich hues of autumn. Our
goal is to create a time-lapse transition from spring to fall.

Authorized licensed use limited to: Tsinghua University. Downloaded on September 24,2025 at 01:25:44 UTC from IEEE Xplore. Restrictions apply.

DU et al.: FAST VIDEO RECOLORING VIA CURVE-BASED PALETTES 5927

Fig. 6. Optimization times required for editing different numbers of frames.

To achieve this, we change the palette colors of the first
frame to green and the last frame to red. With λ = 0, the
colors of the first and last frames change as expected, but a
smooth transition across all frames is not achieved (see the
three frames in the middle). With λ = 1 or a higher value like
100, it tends to preserve the original autumn colors but ignores
user edits. To make a good trade-off, we set λ = 0.1 for all
examples.

3) Optimization Performance: To evaluate the optimization
performance (Eq. 8), we measured the running times for
editing 1, 2, up to 20 frames in the Forest example, as shown
in Fig. 6. The results demonstrate that our optimization is
rather efficient, with most execution times ranging between
25 and 30 milliseconds, thus fully supporting real-time video
recoloring.

B. Comparisons

To fully evaluate the effectiveness of our algorithm, we
provide multiple examples in Figs. 5 and 6 to compare our
algorithm with Du et al. [15] in terms of recoloring results
and computational efficiency.

In the field of palette-based recoloring, most works focus on
static images. Du et al. [15] pioneered the extension of palette-
based color editing algorithms to video scenes. They employ
a 4D geometry, i.e., a skew polytope, to represent the palette
of a video, achieving natural recoloring results. However, this
method still has some limitations.

Firstly, their method progressively built the skew polytope,
involving numerous iterations in block merging and vertex
removal, requiring significant time for video palette gener-
ation. Our method employs a simpler geometry, i.e., a set
of Bézier curves in RGBT space, to represent the video
palette, avoiding numerous iterations and resulting in more
efficient palette extraction. The running times for video palette
extraction of both methods are presented in Table I. It is
evident that our method is over 400 times faster than Du et al.’s
method.

Secondly, the palette colors in Du et al.’s method lack repre-
sentativeness because they are derived from the skew polytope
vertices rather than directly from video pixels. Furthermore,
the simplification process (block merging and vertex removal)
moves the vertices far away from the video pixels, further
reducing the representativeness of the palette. This will result
in unnecessary global color changes when editing the color

TABLE I
COMPARISON OF TIME COST BETWEEN DU ET AL. [15] AND OUR

METHOD FOR VIDEO PALETTE EXTRACTION. ON AVERAGE, OUR
ALGORITHM FOR EXTRACTING VIDEO PALETTE IS MORE THAN

400 TIMES FASTER THAN DU ET AL. [15]

palette. We generate the video palette by first performing
per-frame clustering and then fitting a set of Bézier curves.
This ensures better palette representativeness, enabling more
intuitive editing of local object colors. As shown in the Bird
example of Fig. 7, the user intends to change the bottom
of the feeder from dark-cyan to violet. Du et al.’s method
causes unexpected global color changes in regions such as
the background, a bird’s head, and the grain container. Our
results better align with the user’s editing intent. Similarly, in
the Lake example of Fig. 8, Du et al.’s method also produces
undesired color changes in the hill and the sky.

Lastly, for videos with complex color variations, Du et al.’s
method tends to produce merging or splitting vertices during
block merging. This hinders the accurate capture of continuous
color transitions for specific objects throughout the video. In
contrast, our method yields a set of independent yet smooth
Bézier curves, making it easier to capture the color variations
of certain objects. Consequently, our method offers greater
convenience for fine-tuning the gradient effect of such objects.
For example, in the Starry example of Fig. 7, the user wants
to adjust the color of the sky from yellow to blue and then
smoothly back to yellow. Du et al.’s approach struggles to
remove yellow hues from the sky, while our color palette
adeptly captures the nuances of the sky’s color shifts, thereby
accomplishing a more seamless gradient transition. Similarly,
in the Ink example of Fig. 8, to produce a similar effect, Du
et al.’s method requires more complex editing and produces
an unexpected purple during the transition.

In general, our method effectively overcomes the limitations
mentioned above. Quantitative and qualitative experimental
comparisons demonstrate the efficiency and effectiveness of
the proposed method.

C. Results

We generated 10 video recoloring results, shown in Figs. 1,
9 and 10. The examples shown in Fig. 1 and Fig. 9 are
time-lapse videos, and Fig. 10 presents some videos with
time-varying lighting. Our method consistently generates high-
quality recoloring results in all examples. For example, in
the Tower example, the user successfully adjusted the tone
of the night sky by modifying the color palettes of three
frames, achieving a smooth gradient effect from light to dark.
In the Sunset example, the user converted the original sunset
scene into a sunrise video by modifying the start and end
frame palettes. In the Seasons example, the user fine-tuned the
palettes to make leaves more tender in spring, richer green

Authorized licensed use limited to: Tsinghua University. Downloaded on September 24,2025 at 01:25:44 UTC from IEEE Xplore. Restrictions apply.

5928 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 34, 2025

Fig. 7. Comparison of our method with Du et al. [15]. For each example, from top to bottom, we provide the input video, the skew polytope palette generated
by Du et al. [15] and edits made on it, the corresponding recoloring results, our recoloring results and edits on frame palettes. Please note the marked areas
and arrows to compare the differences of both results.

Authorized licensed use limited to: Tsinghua University. Downloaded on September 24,2025 at 01:25:44 UTC from IEEE Xplore. Restrictions apply.

DU et al.: FAST VIDEO RECOLORING VIA CURVE-BASED PALETTES 5929

Fig. 8. Comparison of our method with Du et al. [15]. For each example, from top to bottom, we provide the input video, the skew polytope palette generated
by Du et al. [15] and edits made on it, the corresponding recoloring results, our recoloring results and edits on frame palettes. Please note the marked areas
to compare the differences of both results.

Authorized licensed use limited to: Tsinghua University. Downloaded on September 24,2025 at 01:25:44 UTC from IEEE Xplore. Restrictions apply.

5930 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 34, 2025

Fig. 9. Results generated by our method. For each example (top to bottom): a timeline, input video, user edits on specific frames (top row: original palettes,
bottom row: edited palettes), and recolored video.

in summer, and more vibrant red in autumn, enhancing the
seasonal transformation. In the Man example, the user changed

the color of the light on the face, making the skin tone look
more natural and the overall lighting feel softer.

Authorized licensed use limited to: Tsinghua University. Downloaded on September 24,2025 at 01:25:44 UTC from IEEE Xplore. Restrictions apply.

DU et al.: FAST VIDEO RECOLORING VIA CURVE-BASED PALETTES 5931

Fig. 10. More results generated by our method. For each example (top to bottom): a timeline, input video, user edits on specific frames (top row: original
palettes, bottom row: edited palettes), and recolored video.

Table II presents the running times for palette extraction in
all examples, including details on resolution, frame count, and
processing time.

In general, our method is efficient and robust for different
examples and could produce natural, artifact-free, and smooth
time-varying recoloring results.

Authorized licensed use limited to: Tsinghua University. Downloaded on September 24,2025 at 01:25:44 UTC from IEEE Xplore. Restrictions apply.

5932 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 34, 2025

Fig. 11. Statistics of user study. We use stacked bar charts to show the user votes for each task. For Task 1, 71 of 81 votes (87.65%), for Satisfied/Very
Satisfied. For Task 2, 61 of 81 votes (75.30%) preferred our method. For Task 3, 69 of 81 votes (85.18%) for Satisfied/Very Satisfied.

TABLE II
RUNNING TIMES REQUIRED FOR VIDEO PALETTE EXTRACTION

D. User Study

To further validate the effectiveness of our method, we
conducted a user study to evaluate our palette extraction and
video recoloring results. We invited 27 users aged between 18
and 30 to participate in this experiment. This study contains
the following three tasks:

(1) Task 1: Evaluation of video recoloring results. We
asked each participant to evaluate three examples. For
each example, we provided the input video, the edit
intention, and the recolored video. We then asked them
to rate the results according to the recoloring quality
and how well the results align with the intentions. The
rating range is divided into five levels, ranging from
“very dissatisfied” to “very satisfied”.

(2) Task 2: Comparison of video recoloring results. We
asked each participant to evaluate three examples. For
each example, we provided the input video, the edit
intention, and the recolored videos produced by Du et al.
[15] and our method (these two results are anonymous
and are arranged in random order). The participants were
then asked to choose the best result.

(3) Task 3: Evaluation of video palette quality. We asked
each participant to evaluate three examples. For each
example, we provided the input video and the frame

palettes generated by our method. We then asked them
to judge whether the frame palettes capture the dominant
color changes in the video. Similarly, the rating scale is
divided into 5 levels from “very dissatisfied” to “very
satisfied”.

Per-task voting results are detailed in Fig. 11. Overall, we
received very positive feedback. For Task 1, about 88% of the
users rated our recoloring results as satisfied or higher. For
Task 2, approximately 75% of the participants preferred the
results generated with our method over that of DiVerdi et al.
[23]. For Task 3, around 85% of the participants were satisfied
or higher with the generated frame palettes, indicating that our
approach can successfully capture the main color changes in
the input videos.

VI. CONCLUSION AND FUTURE WORK

In this paper, we introduced a novel video recoloring
approach that employs a set of Bézier curves to represent the
palette of the input video, achieving efficient palette extraction
yet natural recoloring. Compared to existing methods, our
approach offers three main advantages. 1) We extract video
palettes by fitting a set of Bézier curves, which avoids numer-
ous of iterative operations and therefore greatly improves the
efficiency of palette extraction. 2) Our video palette exhibits
better representativeness, as the data points for fitting the
Bézier curves come directly from the video frames. 3) Our
approach provides better local control, allowing users to
directly edit specific frames to recolor a video.

However, our method still has several limitations that need
to be further addressed.

• Our video palette extraction relies solely on color infor-
mation, without considering semantic features. Thus, it
cannot perform content-aware recoloring, that is, distinct
objects or regions sharing similar colors cannot be recol-
ored independently.

• Although our palette effectively captures gradual color
transitions, it struggles with abrupt changes, particularly
rapid color merging and separation events.

• During video palette extraction, all Bézier curves utilize a
fixed number of control points, lacking adaptability based
on the intensity of color variations over time.

Authorized licensed use limited to: Tsinghua University. Downloaded on September 24,2025 at 01:25:44 UTC from IEEE Xplore. Restrictions apply.

DU et al.: FAST VIDEO RECOLORING VIA CURVE-BASED PALETTES 5933

• Since we apply k-means clustering to capture dominant
colors per frame, it may fail to capture color variations
within smaller or less prominent objects and regions.

To overcome these challenges, we propose the following
solutions and aim to refine them in future works.
• Firstly, we plan to extract the video palette in a high-

dimensional space that integrates semantic and color
information, to enable content-aware video recoloring.

• Secondly, to handle videos with abrupt color changes,
we consider using the scene segmentation method (Zhu
and Zhou [32]) to divide the video into segments with
smooth color transitions. A dedicated sub-palette will be
extracted per segment, enabling users to recolor complex
sequences by modifying local frame palettes within tar-
geted segments.

• Thirdly, we will develop an improved geometric method
to adaptively determine the number of control points for
each Bézier curve. This ensures that color sequences with
subtle variations require fewer control points, while those
with pronounced variations necessitate more points.

• Lastly, to enable the video palette to capture color changes
in small or visually subtle regions, we can employ
saliency detection or manual interaction to select specific
regions, ensuring that their color variations are reflected
in the palette.

ACKNOWLEDGMENT

The authors would like to thank the anonymous reviewers
for their valuable comments and constructive suggestions.

REFERENCES

[1] H. Chang, O. Fried, Y. Liu, S. DiVerdi, and A. Finkelstein, “Palette-
based photo recoloring,” ACM Trans. Graph., vol. 34, no. 4, pp. 1–139,
Jul. 2015.

[2] Q. Zhang, C. Xiao, H. Sun, and F. Tang, “Palette-based image recoloring
using color decomposition optimization,” IEEE Trans. Image Process.,
vol. 26, no. 4, pp. 1952–1964, Apr. 2017.

[3] J. Tan, J.-M. Lien, and Y. Gingold, “Decomposing images into layers
via RGB-space geometry,” ACM Trans. Graph., vol. 36, no. 4, pp. 1–14,
Jul. 2017.

[4] J. Tan, J. Echevarria, and Y. Gingold, “Efficient palette-based decom-
position and recoloring of images via RGBXY-space geometry,” ACM
Trans. Graph., vol. 37, no. 6, pp. 1–10, Dec. 2018.

[5] J. Tan, S. DiVerdi, J. Lu, and Y. Gingold, “Pigmento: Pigment-based
image analysis and editing,” 2017, arXiv:1707.08323.

[6] J. Tan, J. Echevarria, and Y. Gingold, “Palette-based image decomposi-
tion, harmonization, and color transfer,” 2018, arXiv:1804.01225.

[7] Y. Wang, Y. Liu, and K. Xu, “An improved geometric approach for
Palette-based image decomposition and recoloring,” in Proc. Comput.
Graph. Forum, vol. 38, 2019, pp. 11–22.

[8] M. Grogan and A. Smolic, “Image decomposition using geometric
region colour unmixing,” in Proc. Eur. Conf. Vis. Media Prod., Dec.
2020, pp. 1–10.

[9] Y. Aksoy, T. O. Aydin, A. Smoli, and M. Pollefeys, “Unmixing-based
soft color segmentation for image manipulation,” ACM Trans. Graph.,
vol. 36, no. 4, pp. 1–19, Jul. 2017.

[10] Q. Zhang, Y. Nie, L. Zhu, C. Xiao, and W.-S. Zheng, “A blind color
separation model for faithful palette-based image recoloring,” IEEE
Trans. Multimedia, vol. 24, pp. 1545–1557, 2022.

[11] M.-Y. Cui, Z. Zhu, Y. Yang, and S.-P. Lu, “Towards natural object-based
image recoloring,” Comput. Vis. Media, vol. 8, no. 2, pp. 317–328, Jun.
2022.

[12] C.-K.-T. Chao, J. Klein, J. Tan, J. Echevarria, and Y. Gingold,
“ColorfulCurves: Palette-aware lightness control and color editing via
sparse optimization,” ACM Trans. Graph., vol. 42, no. 4, pp. 1–12, Jul.
2023, doi: 10.1145/3592405.

[13] C.-K.-T. Chao, J. Klein, J. Tan, J. Echevarria, and Y. Gingold,
“LoCoPalettes: Local control for Palette-based image editing,” Comput.
Graph. Forum, vol. 42, no. 4, Jul. 2023, doi: 10.1111/cgf.14892.

[14] Q. Sun, Y. Nie, Q. Zhang, and G. Li, “Building coarse to fine convex
hulls with auxiliary vertices for palette-based image recoloring,” IEEE
Trans. Vis. Comput. Graphics, vol. 30, no. 8, pp. 5581–5595, Aug.
2024.

[15] Z.-J. Du, K.-X. Lei, K. Xu, J. Tan, and Y. Gingold, “Video recoloring
via spatial–temporal geometric palettes,” ACM Trans. Graph., vol. 40,
no. 4, pp. 1–16, Aug. 2021.

[16] H. Prautzsch, W. Boehm, and M. Paluszny, Bézier and B-Spline Tech-
niques, vol. 6. Cham, Switzerland: Springer, 2002.

[17] B. J. Meier, A. M. Spalter, and D. B. Karelitz, “Interactive color palette
tools,” IEEE Comput. Graph. Appl., vol. 24, no. 3, pp. 64–72, May
2004.

[18] J. Delon, A. Desolneux, J. L. Lisani, and A. B. Petro, “Automatic color
palette,” in Proc. IEEE Int. Conf. Image Process., Sep. 2005, pp. II–706.

[19] P. O’Donovan, A. Agarwala, and A. Hertzmann, “Color compatibility
from large datasets,” in Proc. ACM SIGGRAPH papers, Jul. 2011,
pp. 1–12.

[20] S. Lin and P. Hanrahan, “Modeling how people extract color themes
from images,” in Proc. SIGCHI Conf. Hum. Factors Comput. Syst., Apr.
2013, pp. 3101–3110.

[21] Y. Cao, A. B. Chan, and R. W. H. Lau, “Mining probabilistic color
palettes for summarizing color use in artwork collections,” in Proc.
SIGGRAPH Asia Symp. Visualizat., Nov. 2017, pp. 1–8.

[22] M. Shugrina, J. Lu, and S. Diverdi, “Playful palette: An interactive
parametric color mixer for artists,” ACM Trans. Graph., vol. 36, no. 4,
pp. 1–10, Aug. 2017.

[23] S. DiVerdi, J. Lu, J. Echevarria, and M. Shugrina, “Generating playful
palettes from images,” Expressive, vol. 19, pp. 69–78, May 2019.

[24] J. Cho, S. Yun, K. Lee, and J. Y. Choi, “PaletteNet: Image recolorization
with given color palette,” in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit. Workshops (CVPRW), Jul. 2017, pp. 1058–1066.

[25] N. Akimoto, H. Zhu, Y. Jin, and Y. Aoki, “Fast soft color segmentation,”
in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun.
2020, pp. 8274–8283.

[26] Z. Kuang, F. Luan, S. Bi, Z. Shu, G. Wetzstein, and K. Sunkavalli,
“PaletteNeRF: Palette-based appearance editing of neural radiance
fields,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit.
(CVPR), Jun. 2023, pp. 20691–20700.

[27] Q. Wu, J. Tan, and K. Xu, “PaletteNeRF: Palette-based color editing for
NeRFs,” 2022, arXiv:2212.12871.

[28] T. Ju, S. Schaefer, and J. Warren, “Mean value coordinates for closed
triangular meshes,” ACM Trans. Graph., vol. 24, no. 3, pp. 561–566,
Jul. 2005.

[29] G. M. Phillips and G. M. Phillips, “Bernstein polynomials,” in Interpo-
lation Approximation by Polynomials. New York, NY, USA: Springer,
2003, pp. 247–290.

[30] R. Achanta, A. Shaji, K. Smith, A. Lucchi, P. Fua, and S. Süsstrunk,
“SLIC superpixels compared to state-of-the-art superpixel methods,”
IEEE Trans. Pattern Anal. Mach. Intell., vol. 34, no. 11, pp. 2274–2282,
Nov. 2012.

[31] D. Arthur and S. Vassilvitskii, “K-means++: The advantages of careful
seeding,” in Proc. 18th Annu. ACM-SIAM Symp. Discrete Algorithms,
2007, pp. 1027–1035.

[32] Y. Zhu and D. Zhou, “Scene change detection based on audio and video
content analysis,” in Proc. 5th Int. Conf. Comput. Intell. Multimedia
Appl. (ICCIMA), Sep. 2003, pp. 229–234.

Zheng-Jun Du (Member, IEEE) received the Ph.D.
degree in computer science from Tsinghua Univer-
sity in 2023. He is an Associate Professor with the
School of Computer Technology and Application,
Qinghai University. His research interests include
computer graphics, image and video processing,
computer vision, and dynamic SLAM.

Authorized licensed use limited to: Tsinghua University. Downloaded on September 24,2025 at 01:25:44 UTC from IEEE Xplore. Restrictions apply.

http://dx.doi.org/10.1145/3592405
http://dx.doi.org/10.1111/cgf.14892

5934 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 34, 2025

Jia-Wei Zhou received the master’s degree from
Qinghai University in 2024. His research interests
include computer graphics, image and video process-
ing, and computer vision.

Kang Li is currently pursuing the bachelor’s degree
with Qinghai University. His research interests
include computer graphics, image and video process-
ing, and computer vision.

Jian-Yu Hao is currently pursuing the bachelor’s
degree with Qinghai University. His research inter-
ests include computer graphics, image and video
processing, and computer vision.

Zi-Kang Huang received the bachelor’s degree
from Qinghai University in 2023. He is currently
pursuing the master’s degree at Tianjin University.
His research interests include computer graphics,
image and video processing, and computer vision.

Kun Xu received the bachelor’s and Ph.D. degrees
from the Department of Computer Science and Tech-
nology, Tsinghua University, in 2005 and in 2009,
respectively. He is an Associate Professor with the
Department of Computer Science and Technology,
Tsinghua University. His research interests include
real-time rendering, image/video editing, and 3D
scene synthesis.

Authorized licensed use limited to: Tsinghua University. Downloaded on September 24,2025 at 01:25:44 UTC from IEEE Xplore. Restrictions apply.

