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Abstract

Aperture photometry is a fundamental technique widely used to obtain high-precision light curves in optical
survey projects like Tianyu. However, its effectiveness is limited in crowded fields, and the choice of aperture size
critically impacts photometric precision. To address these challenges, we propose DeepAP, an efficient and
accurate two-stage deep learning framework for aperture photometry. Specifically, for a given source, we first
train a Vision Transformer (ViT) model to assess its feasibility of aperture photometry. We then train the Residual
Neural Network (ResNet) to predict its optimal aperture size. For aperture photometry feasibility assessment, the
ViT model yields an ROC AUC value of 0.96, and achieves a precision of 0.974, a recall of 0.930, and an F1
score of 0.952 on the test set. For aperture size prediction, the ResNet model effectively mitigates biases inherent
in classical growth curve methods by adaptively selecting apertures appropriate for sources of varying brightness,
thereby enhancing the signal-to-noise ratio (SNR) across a wide range of targets. Meanwhile, some samples in the
test set have a higher SNR than those obtained by exhaustive aperture size enumeration because of the finer
granularity of aperture size estimation. By integrating ResNet with the ViT network, the DeepAP framework
achieves a median total processing time of 18 ms for a batch of 10 images, representing a speed-up of
approximately 5.9 × 104 times compared to exhaustive aperture size enumeration. This work paves the way for
the automatic application of aperture photometry in future high-precision surveys such as Tianyu and Legacy
Survey of Space and Time. The source code and model are available at https://github.com/ruiyicheng/DeepAP.
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1. Introduction

With the rapid advancement of observational technology,
modern robotic photometric surveys are transforming our
understanding of the time-domain universe. One of the leading
facilities currently in operation is the Zwicky Transient
Facility (ZTF; Bellm et al. 2019), which employs a wide-
field camera on the Samuel Oschin Telescope at Palomar
Observatory to scan the northern sky at the optimal cadence
for supernova survey. Looking to the near future, the Vera C.
Rubin Observatory Legacy Survey of Space and Time (LSST;
Ivezić et al. 2019) is poised to revolutionize the field further.
Similarly, the upcoming Tianyu Telescope (Feng et al. 2024),
a one-meter robotic telescope under development in Lenghu,
Qinghai, China, is designed to detect transiting planets and
transient events. These surveys, both current and forthcoming,
share a common need for accurate and efficient photometric
measurements, which are foundational to time-domain

astrophysics and the characterization of dynamic celestial
phenomena.

High-precision photometry of point sources, such as stars and
asteroids, is a critical step in these surveys. For example, ZTF
adopts point-spread function (PSF) photometry as its default
technique (Masci et al. 2019), which is suitable for measuring
stellar fluxes in crowded fields. However, the accuracy of PSF
photometry is sensitive to both the detector’s sampling rate and
atmospheric seeing conditions. Errors in PSF modeling can
introduce biases in the resulting photometry (Howell 2000).

Aperture photometry is used to achieve higher precision,
especially in exoplanet detection missions like Kepler
(Borucki et al. 2010), the Transiting Exoplanet Survey Satellite
(TESS; Ricker et al. 2014), the Wide Angle Search for Planets
(Pollacco et al. 2006), and the Next Generation Transit Survey
(Wheatley et al. 2018). For space-based missions such as
Kepler and TESS, fixed-pixel apertures are used due to the
spacecraft’s excellent pointing stability (Morris et al. 2020).
These apertures are selected based on the pixel-wise signal-to-
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noise ratio (SNR) tests. However, in ground-based surveys, the
need to include two additional apertures for accurate sky
background subtraction makes this approach computationally
expensive and operationally challenging. Furthermore, varia-
tions in the PSF, caused by changing atmospheric conditions,
telescope optics, and tracking issues, complicate the task of
determining the optimal aperture shape. As a practical
solution, ground-based instruments typically adopt a fixed
aperture shape, such as a circle or square, and adjust only the
size to optimize performance.

The key parameters in aperture photometry are the sizes of three
apertures: one for the target source and two for estimating the
surrounding sky background. Traditionally, the inner aperture size
is selected using a method called the “growth curve,” which
measures the SNR across a series of increasing aperture sizes and
selects the size that yields the highest SNR (Stetson 1990).
However, this method has several limitations. First, it only
optimizes the size of the inner aperture and does not account for
the background annuli. Second, it operates on a per-image basis,
meaning that the optimal aperture for a single image may not
generalize to the full night’s data, even if that image is a stacked
composite. The growth curve method maximizes the SNR for a
single source in a single frame, not for the entire light curve over
time. Third, it is prone to contamination from nearby stars; the
algorithm may inadvertently increase the aperture size to include
nearby sources, thus corrupting the target signal. In some cases, it
even fails to find an optimal aperture within the tested range. In
this case, aperture photometry is not feasible because the vicinity is
too crowded. These limitations highlight two key challenges in
aperture photometry: (1) determining whether a target is feasible
for aperture photometry, and (2) if so, determining the optimal
sizes for the apertures.

Recent advances in computer vision, particularly Convolu-
tional Neural Networks (CNNs) and Vision Transformers (ViTs),
provide powerful tools for astronomical image analysis. CNNs
excel at extracting hierarchical local features (e.g., edges,
gradients) and preserving spatial relationships, making them
ideal for regression and classification tasks. For example, in
denoising, Liu et al. (2025) proposed a self-supervised TDR
method to reduce solar magnetogram noise from 8 G to 2 G while
preserving faint galaxy structures in Hubble images. Elhakiem
et al. (2021) optimized Astro U-net for multi-noise denoising via
hybrid fusion, achieving superior PSNR/SSIM improvements.
Vojtekova et al. (2021) demonstrated that Astro U-net emulates
doubled exposure times, boosting SNR by 1.63× for Hubble
Space Telescope (HST) data. Gheller & Vazza (2022) employed
denoising autoencoders to detect faint radio cosmic webs in Low
Frequency Array observations through cosmological simulations.
For galaxy morphology classification, Dieleman et al. (2015)
pioneered rotation-invariant CNNs for Galaxy Zoo data,
achieving >99% accuracy on high-agreement samples. Large-
scale morphology catalogs were enabled by Gravet et al. (2015)
(CANDELS, 50k galaxies) and Domínguez Sánchez et al. (2018)

(SDSS, 670k galaxies), with the latter reducing misclassifi-
cation to <1%. To address limited labeled data, Luo et al.
(2025a) proposed semi-supervised GC-SWGAN, achieving
75% accuracy on Galaxy10 DECals using only 20% labeled
samples. For survey data enhancement, Luo et al. (2025b)
developed Pix2WGAN, a CNN-based neural network, to
transform SDSS/DECaLS images to HSC quality, improving
structural visibility. Sandeep et al. (2021) implemented
multiple CNN architectures for simultaneous galaxy classi-
fication (92.3% accuracy) and redshift prediction. For rare
object identification, Primack et al. (2018) detected “blue
nugget” galaxies in CANDELS, revealing their characteristic
mass range (109.2−10.3 M⊙), while Davies et al. (2019)
achieved 77% recall for gravitational lenses in Euclid-like
simulations. Advanced techniques include Burke et al.
(2019)’s Mask R-CNN for deblending (98% galaxy
precision) and Jia et al. (2020)’s real time Faster R-CNN
for wide-field surveys.

In contrast, ViTs capture global contextual patterns through
self-attention mechanisms, enhancing robustness for complex
astronomical image classification. For example, Donoso-Oliva
et al. (2023) introduced ASTROMER, a transformer-based model
that generates light curve representations via self-supervised
pretraining, improving downstream classifiers in limited-label
scenarios. Similarly, Yang & Li (2024) applied ViT (“stellar-
ViT”) to stellar classification using SDSS photometric images,
achieving 83.9%–86.3% accuracy across seven spectral classes
and outperforming CNNs. For galaxy morphology, ViT-based
approaches show strong performance: Bhavanam et al. (2024)
used ViT-CNN hybrids to improve faint SDSS object classifica-
tion. Cao et al. (2024) proposed Convolutional Visual Transfor-
mer (CvT) for galaxy morphology classification. Compared with
other five class classification models, CvT outperforms >98% in
terms of average accuracy, precision, recall, and F1 score.
Yeganehmehr & Ebrahimnezhad (2025) further demonstrated
ViT’s capability, attaining 99.85% classification accuracy on
galaxy images. Transformers also excel in time-series astronomy:
Allam & McEwen (2024) developed a time-series transformer
for photometric transient classification, achieving competitive
performance (log-loss 0.507, AUC 0.98) on LSST challenge data
with minimal feature engineering.

To fully exploit the strengths of ViTs in modeling global
contextual information and CNNs in efficient local feature
extraction for our specific task, we propose a robust two-stage
framework to overcome the limitations of classical aperture
photometry. Specifically, stage 1 employs the ViT classifier
(Dosovitskiy et al. 2020) to assess the global feasibility of applying
aperture photometry to a given source. If a source is deemed
feasible, Stage 2 utilizes the ResNet-18 network (He et al. 2016) to
predict the optimal sizes for the three apertures. This integration
leverages ViT’s capability in global source viability assessment
and CNN’s efficiency in precise aperture size prediction, thereby
enhancing the overall photometric performance.
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The remainder of the paper is organized as follows.
Section 2 presents the data set and architecture design;
Section 3 evaluates the performance of our method on real
survey data and shows the comparison with other methods;
and Section 4 concludes with implications for future
improvements.

2. Method

2.1. Overview

Our goal is to achieve efficient yet accurate aperture
photometry. To this end, we employ a two-stage deep learning
framework. First, we train a ViT model to filter out sources
with severe occlusion or excessive noise contamination.
Subsequently, a ResNet-18 model is trained to accurately
predict the optimal aperture sizes of an individual target. The
pipeline of the proposed method is illustrated in Figure 1.

2.2. Data Set

To support the two-stage framework mentioned above, we
collected 522 images from Muguang Observatory (coordinate:
31�10′07″N, 121�36′21″E; altitude: 30 m) on 2024 July 4. A
QHY600M (Alarcon et al. 2023) camera was mounted on a
CDK350 telescope.5 The camera was set to use 1× 1 binning,
and no overscan was used. The exposure time for each image
was set to 30 s. The Baader CMOS L-Filter (420–685 nm) was
used in this observation.6

Input data: The input to our model comprises 128× 128
pixel sub-images centered on the centroids of detected sources
in the stacked astronomical images. These sub-images are
generated with bias subtraction, flat-field calibration, image
stacking, and alignment using a modified version of the Tianyu
pipeline7 (Rui et al. 2025). Among the 522 images, 506 high-
quality images are utilized in the subsequent analysis. The

source parameters, including centroid coordinates, full width at
half maximum (FWHM), and other relevant metrics, are then
extracted from the stacked image using SEP (Barbary 2016).
For each detected source, a 128× 128 pixel subimage centered
on the source’s centroid is extracted from the stacked image to
serve as input to our data set.
Label construction: To construct the training labels, for

each source in the input data, we employ brute-force
enumeration to find its optimal aperture, and then assess its
feasibility for aperture photometry based on apertures of
surrounding sources. To optimize the aperture sizes for each
object, we systematically vary the radii and select the
combination that yields the light curve with the highest
SNR. Specifically, for the ith source, the radius of the inner
aperture, rinn,i, is varied from 1 FWHM to 5 FWHM in
increments of 0.05 FWHM. The radius of the middle aperture
(the inner boundary of the sky background annulus), rmid,i, is
varied from 1.1rinn,i to 2rinn,i, in steps of 0.1rinn,i. The outer
aperture radius (the outer boundary for sky background
estimation), rout,i, is varied from rmid,i + 3 to rmid,i + 15, in
steps of 3 pixels. For each set of radii (rinn,i, rmid,i, rout,i), the
corresponding light curve is extracted using SEP. The SNR of
each light curve is defined as

( )µ
=SNR , 1i

i

where μi and σi are the weighted mean and weighted standard
deviation of the light curve for the ith object, respectively. The
weight of each flux measurement in the light curve is assigned
to be inversely proportional to the square of the photometric
uncertainty for a single exposure, which are also provided by
SEP. For each object in the training set, we enumerate
(rinn,i, rmid,i, rout,i) and obtain the corresponding SNR of the
light curve.

To create the data set for aperture photometry feasibility
classification, each image is labeled with a binary label: 0
indicates that the image is infeasible for aperture photometry
due to overcrowding, while 1 indicates feasibility. Specifically,
the image of the ith star is labeled as 1 if and only if there

ViT 

ResNet-18

Input Filtering results Output apertures 

Infeasible for aperture photometry

Figure 1. The pipeline of our method. Our method contains two stages. In stage 1, we filter out chopped images that are infeasible for aperture photometry via a ViT
network. In stage 2, we train a ResNet, to obtain the accurate apertures of a given chopped image.

5 https://planewave.com/products/cdk350/
6 https://www.baader-planetarium.com/en/baader-uv-ir-cut-l-filter-cmos-
optimized.html
7 https://github.com/ruiyicheng/Tianyu_pipeline
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exists a set of (rinn,i, rmid,i, rout,i) such that for all j ≠ i,

(
)

( )

> + <
> +

r r r r

r r

3FWHM ; and 3FWHM

or 3FWHM ,

2

ij i j ij i j

ij i j

inn , mid ,

out ,

where rij denotes the distance between the ith and jth resolved
sources, and FWHMj is the FWHM of the jth source. The
image is labeled as 0 otherwise. The 3 FWHM gap is required
to ensure the existence of an uncontaminated aperture for
photometry when a source is marked as feasible because the
flux contamination of other sources is negligible at this
distance (Howell 2000).

Applying this criterion to all 2677 sources, 2311 are labeled
as feasible (label 1). The sources are then divided into training
and testing subsets in a 7:3 ratio, resulting in 1983 sources in
the training set and 804 in the test set for the aperture
photometry feasibility classification task. Representative
examples from the data set are presented in Figure 2. To
augment the training set, we apply rotational transformations
at angles of 36°, 72°, 108°, ..., 324° to full-frame stacked
images using SCAMP (Bertin 2006) and SWARP (Bertin 2010).
The corresponding 128 × 128 image cutouts are extracted
around each source using the world coordinate system
information and the R.A./ decl. positions of the 1983 training
sources. This augmentation yields a total of 19,830 128 × 128
training images. The same labels are assigned to the
augmented images, based on the assumption of rotational
symmetry.

For aperture size optimization, we use the same 2311
sources labeled as feasible in the previous step. Each image
corresponding to the ith source is labeled with the set of
aperture radii (rinn,i, rmid,i, rout,i) that maximize the SNR, as
defined in Equation (1), under the constraint specified in
Equation (2) for all j ≠ i. The data set is then split into training
and testing subsets using a 7:3 ratio, yielding 1617 training

sources and 694 test sources. Representative examples from
this data set are shown in Figure 3. As before, we apply 9-fold
rotational augmentation to the training sources, resulting in
16,170 128 × 128 images. The aperture radius labels are
inherited from the corresponding unrotated sources, again
under the assumption of rotational symmetry.

2.3. Aperture Photometry Feasibility Assessment

The first stage of our method employs a ViT network to
filter out celestial objects that are infeasible for aperture
photometry due to severe occlusion or excessive noise
contamination. The network architecture and data flow are
illustrated in Figure 4 and are described below.

For an input clipped image × ×Rx H W C , where
H = W = 128, C = 1 (image height, width, and channels),
we first split it into N patches of size P × P, with
N = 64, P = 16. Each patch × ×Rxp

i P P C is then flattened
into a 1D vector and linearly projected into a higher-
dimensional space using a learnable patch embedding E( · ).
To preserve spatial information, a positional embedding

×RE N P
pos

2
is added to the patch embeddings. Additionally,

a classification token xclass is prepended to the sequence to
aggregate global information for the final classification. The
input to the Transformer Encoder is thus created as

[ ( ) ( ) ( )] ( )= +Z x E x E x E x E; ; ; ; . 3p p p
N

0 class
1 2

pos

The input sequence Z0 is processed by L cascaded Transformer
encoder layers. Each layer consists of two key components:

1. Multi-head Self-Attention (MSA). MSA captures long-
range dependencies between image patches by enabling
global interactions. Its multi-head design learns diverse
patterns in parallel subspaces. In implementation, each
head applies independent learnable projections to trans-
form these shared embeddings into three distinct vector

Figure 2. Visualization of samples from the aperture photometry feasibility determination data set. Images in the first four columns are labeled as 1 (feasible for
aperture photometry), while the remaining columns are labeled as 0 (infeasible). The streak-like patterns in the background result from masks applied to hot pixels
and do not affect the photometry. All resolved sources have been manually verified to ensure they represent genuine point sources rather than artifacts caused by
these streak-like fluctuations.
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sets: Queries (Q), Keys (K) and Values (V). Within each
head, every query interacts with all keys to compute
attention weights that dynamically blend values. This
allows global context aggregation while maintaining
head-specific perspective diversity. The combined head
outputs are linearly fused, implemented as

( ( )) ( )= +Z Z ZMSA LN . 4l l l1 1

2. Feed-Forward Network (MLP). A two-layer perceptron
with nonlinearity, applied to each token independently.
Similar to MSA, layer normalization and residual
connections are used

( ( )) ( )= +Z Z ZMLP LN . 5l l l

The final output token ZL
0 (corresponding to the classification

token) is passed through a Multi-Layer Perceptron (MLP)
followed by a softmax activation, producing a probability
distribution y = [y0, y1] over the two classes

( ( )) ( )=y ZSoftmax MLP , 6L
0

where y0 and y1 represent the probabilities of the input image
being infeasible (label 0) or feasible (label 1) for aperture
photometry, respectively.

The network is trained using Binary Cross-Entropy loss,
defined as

( ) ( ) ( )=L p y p ylog log , 7fa 0 0 1 1

where p = [p0, p1] is the ground-truth label (one-hot encoded).
This stage effectively filters out low-quality images, ensuring
that only reliable candidates proceed to aperture prediction.

2.4. Optimal Aperture Size Estimation

In this stage, we adopt ResNet-18, a well-proven CNN in
computer vision, as the backbone to predict the optimal
apertures of a given source. The ResNet-18 network is

illustrated in Figure 5, which takes a 128× 128 chopped
image as input and outputs three aperture values indicating the
inner (r1), middle (r2) and outer (r3) radii, respectively.

The ResNet-18 network consists of a series of convolutional
layers, followed by a global average pooling (GAP) layer and a
fully connected layer with three neurons. The convolutional
layers are organized into eight “ResNet blocks,” each
containing a set of convolutional layers with skip connections
that allow the network to learn residual functions. This design
enables the network to achieve deeper architectures while
mitigating the problem of vanishing gradients during training.

The data flow through the network can be described as
follows:

1. Input. A 128× 128 pixel single-channel chopped image
is fed into the network.

2. Initial Convolution and Pooling. The input image is first
processed by a 7× 7 convolutional layer with 64 output
channels and a stride of 2, followed by a 3× 3 max pooling
layer with a stride of 2. This initial block reduces the spatial
resolution of the image while increasing the depth.

3. ResNet Blocks. The output of the initial block is then
passed through seven Residual Neural Network (ResNet)
blocks, each containing a series of 3× 3 convolutional
layers with 64, 128, 256, or 512 output channels
depending on the block’s position in the network. The
skip connections within each block allow the network to
learn the identity function, enabling it to learn more
complex relationships between pixels in the input image.

4. Global Average Pooling. After the ResNet blocks, the
network applies a GAP layer, which reduces the spatial
dimensions of the feature maps to a single value per
feature map.

5. Fully Connected Layer. The output of the GAP layer is
then passed to a fully connected layer with three neurons.

Figure 3. Visualization of samples from the aperture prediction data set (inner aperture: red, middle aperture: blue, outer aperture: green). The rings in each image
represent the optimal apertures for photon counting (inner ring) and sky background estimation (outer two rings), determined through exhaustive enumeration.
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This layer outputs the three real numbers representing the
sizes of the three circular apertures.

We employ the Mean Squared Error (MSE) to measure the
difference between the network’s predicted aperture sizes
( )r r r, ,1 2 3 and the ground truth values ( )r r r, ,inn mid out

( ) ( ) ( )=L r r r r r r
1

3
, , , , . 8ap 1 2 3 inn mid out

2

The ResNet-18 architecture offers a robust and efficient
framework for learning features from a chopped image and
regressing aperture sizes. Skip connections and deep network
structure enable the network to capture complex patterns and
relationships in the data, leading to accurate and reliable
predictions.

3. Experiments

All of our experiments were conducted on a computer with
the following configurations: An 13th Gen Intel(R) Core(TM)
i7-13700 CPU (14 cores/20 threads), 2.10 GHz, coupled with

128 GB memory. In addition, the system is equipped with an
NVIDIA GeForce RTX 4090 GPU that features 24 GB of
GDDR6X VRAM, 16384 CUDA cores, and delivers 82.6
TFLOPS of single-precision floating-point performance.

3.1. Training

In our two-stage framework, the ViT model is trained for 50
epochs with a batch size of 256, while the ResNet-18 model is
trained for 100 epochs with a reduced batch size of 12. Both
models use the same Adam optimizer and learning rate
(0.0001).

For the ViT model, the training loss and testing loss show a
fast decline. Eventually, after 50 epochs, the training loss
stabilizes around 0.10, and the testing loss stabilizes around
0.21. The consistent downward trend and convergence of both
training and testing losses indicate effective optimization
without overfitting. This alignment suggests that the model
successfully captures meaningful patterns in the data, achiev-
ing relatively accurate classification.
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Figure 5. The ResNet-18 model for optimal aperture size estimation. The numbers following “c,” “s,” and “p” denote the channel, stride, and padding parameters of
each layer, respectively. Solid arrows indicate direct forward connections, while dashed arrows represent down-sampling operations implemented with 1 × 1
convolution layers of stride 2.
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The ResNet-18 model exhibits rapid convergence in the
training set, with a loss rapidly decreasing from 0.382 to 0.074
within the first 20 epochs. After 100 epochs, the training loss
stabilizes at a low value of approximately 0.007. The test loss
remains consistent, but higher than the training loss throughout
the training process. The test loss rapidly converges after the
first epoch, and after 100 epochs, the testing loss is
approximately 0.240. As the loss of the ResNet-18 model as
defined in Equation (8), a loss of 0.240 corresponds to an
average aperture prediction error of 0.240 0.5 pixels.
Given that the step size for enumerating the outer radius is 3
pixels, the theoretical loss for a model possessing infinite
granularity, which accounts for the discretization limit, is

approximately:
/

=x dx 0.3751

3 0

3 2 2 . This value reflects the
expected loss when the true optimal radius lies between the
enumerated values. The test loss of 0.240 is well below this
bound, indicating strong generalization capabilities despite the
apparent discrepancy. The observed loss is primarily attribu-
table to the granularity of the radius enumeration, rather than
to substantial overfitting.

3.2. Performance on Test Set

For the aperture photometry feasibility assessment, the
confusion matrix of the ViT model is presented in Table 1. It
achieves a precision of 0.974, a recall of 0.930, and an F1
score of 0.952 (support: 6,930). The performance of the ViT
model on the test set is illustrated in Figure 6. The left panel
shows the ROC curve (AUC = 0.96), while the right panel
presents the precision–recall curve (AP = 0.993). The ViT
model exhibits a median inference time of 4 ms for a batch size

of 10 images, corresponding to an average of 0.4 ms per
image.

For the aperture size determination task, we compare the
performance of the ResNet-18 model with the following
baseline models:

1. GCS (growth curve on the stacked image). This method
applies the “growth curve” approach to the stacked
image, with background subtraction performed
using SEP.

2. GCF (growth curve on the first image). This method
applies the “growth curve” approach to the first
calibrated image, with background subtraction performed
using SEP.

3. Exhaustive Enumeration. The optimal aperture size
obtained through an exhaustive search. This method
was also used to generate the ground truth labels for the
training and testing data sets, as described in Section 2.2.

Optimal aperture sizes using the growth curve method are
determined by varying the trial aperture radius from 1 FWHM to
5 FWHM in 0.05 FWHM steps. In the unrotated test set,
comprising 694 sources, we assess the feasibility of obtaining an
optimal aperture for the GCS and GCF methods. Feasibility as
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Figure 6. The ROC and precision–recall curves of the ViT Model.

Table 1
The Confusion Matrix of the ViT Model (Threshold: 0.5)

Predicted Feasible Predicted Infeasible

Actual Feasible TP: 6446 FN: 484
Actual Infeasible FP: 173 TN: 937
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defined by the first condition of Equation (2) is achieved for 658
sources with GCS and 692 sources with GCF. The ResNet-18
model is also applied to estimate aperture sizes on the same test
set, yielding 600 sources satisfying the feasibility condition in
Equation (2). To ensure a consistent comparison across GCS,
GCF, and ResNet-18, we considered only the sources where a
feasible aperture is obtained by all three methods. This
intersection results in a common sample of 587 sources, which
serve as the basis for all subsequent comparisons.

Figure 7 presents a comparison of SNRs generated by different
methods, as defined in Equation (1). The SNR obtained using
estimated apertures from ResNet-18 is higher than that of the
growth curve method applied to the stacked image (GCS) for
83.5% of the sources. Meanwhile, ResNet-18 outperforms the
growth curve method applied to the first calibrated image (GCF)
for 66.4% of the targets. Specifically, ResNet-18 demonstrates

superior performance compared to GCS for faint targets with low
SNR, and better performance than GCF for bright targets with
high SNR. Figure 8 shows a comparison of the inner aperture
sizes selected by ResNet-18, aperture size enumeration and the
growth curve methods. We observe that GCS typically selects
larger apertures than GCF. This difference can be attributed to the
characteristics of the images: the stacked image benefits from
averaged-out sky background fluctuations, allowing larger
apertures to capture more signal photons. However, this strategy
is less effective for faint sources, as it also incorporates more
background noise. In contrast, GCF, applied to a single,
potentially noisier image, selects a smaller aperture to better
match the source profile and minimize background noise. While
this minimizes noise, it leads to poorer performance for bright
sources by excluding some source photons. The aperture size
selected by ResNet-18 adaptively behaves similarly to GCS for
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method. The dashed lines in the histograms indicate the median SNR for each method.
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bright sources and GCF for faint sources. Meanwhile, Figure 7(c)
compares the performance of ResNet-18 with that of the
exhaustive enumeration method, which serves as our training
labels. Surprisingly, for 13 targets, our method outperforms the
original training labels. Examples of improved SNR using
ResNet-18 are shown in Figure 9. For instance, in the case of
Gaia DR3 2188595766451568768 (Gaia G-band magnitude:
G = 12.2255), a representative example of a bright star with a
large FWHM, the ResNet-18 output exceeds the resolution of the
training labels. This improvement is attributed to the finer output
granularity of ResNet-18 compared to the step size used in the
enumeration trials. Meanwhile, for Gaia DR3
2188679565554441856 (G = 17.0869), the performance gain
arises because the optimal outer aperture radius lies beyond the
enumeration range (rout–rmid = 16.45), a situation frequently
encountered with faint stars. The median inference time for the
ResNet-18 model is 14 ms when processing a batch of 10 images.
Meanwhile, we observe that the inner radius estimated by
ResNet-18 closely matches that obtained by enumeration. The
Kolmogorov–Smirnov test yields a p-value of 0.012, indicating
no statistically significant difference between the distributions at
the 3σ level. These results indicate that ResNet-18 successfully
mitigates the inherent biases of classical growth curve methods
across different source brightnesses and image types.

Integrating the ResNet-18 with the ViT network, the
DeepAP framework achieves a total processing time of
18 ms for 10 images, representing a speed-up of approximately
5.9 × 104 times compared to exhaustive aperture size
enumeration. These results highlight the strong general-
izability and high speed of DeepAP.

3.3. Case Study: Gaia DR3 2188697333838401536

Gaia DR3 2188697333838401536 (R.A.: 305°.537403919;
decl.: 59°.563370877) is a relatively faint star (G = 15.9809)

within our field of view. This object serves as a false positive
example for the ViT model: while its true label is 0
(infeasible), the model incorrectly classifies it as 1 (feasible),
with a softmax output exceeding 0.5. Figure 10 presents the
apertures selected by both the enumeration baseline and the
ResNet-18 model, overlaid on the stacked image and the first
calibrated image of the source.

Interestingly, the ResNet-18 model identifies a feasible
aperture (as defined in Equation (2)) that successfully avoids
background contamination, whereas the enumeration method
fails to do so. The inner aperture radius predicted by ResNet-
18 is 0.97 FWHM—slightly smaller than the lower bound used
in enumeration—highlighting the limitation of the latter’s
fixed search space. Although the ResNet-18 aperture may
appear too small in the stacked image (Figure 10(b)), it aligns
well with the source profile in the first calibrated image
(Figure 10(c)), consistent with the analysis in Section 3.2.
Furthermore, as shown in Appendix, the ResNet-18 aperture
provides photometric robustness against contamination from a
nearby source located at the lower right. This example
underscores the strong generalization capability of DeepAP.

4. Conclusion and Discussion

In this study, we introduced DeepAP, an efficient and
accurate two-stage deep learning framework for aperture
photometry, specifically designed to meet the demands of
modern and future large-scale astronomical surveys. By
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combining a ViT for filtering infeasible sources for aperture
photometry and a ResNet-18 network for predicting optimal
aperture sizes, our method addresses the corresponding two
major challenges traditionally encountered in aperture photo-
metry: determining target suitability and selecting optimal
aperture parameters.

Experimental results demonstrate that DeepAP achieves
strong performance in both feasibility assessment and aperture
size determination tasks. The ViT model achieves an area
under the ROC curve (AUC) of 0.96, and achieves a precision
of 0.974, a recall of 0.930, and an F1 score of 0.952 on the test
set. For aperture size determination, the ResNet model
effectively mitigates the biases inherent in classical growth
curve methods by adaptively selecting apertures appropriate
for sources with different brightnesses, leading to enhanced
SNR across a wide range of targets. By integrating ResNet

with the ViT network, the DeepAP framework achieves a
median total processing time of 18 ms for a batch of 10
images, representing a speed-up of approximately 5.9 × 104

times compared to exhaustive aperture size enumeration.
These results suggest several important implications:

1. Scalability and Automation. DeepAP is capable of
processing large volumes of sources rapidly and auto-
matically, making it ideal for surveys such as LSST and
Tianyu, where manual photometric tuning is infeasible.

2. Generalization for more sources. By successfully apply-
ing DeepAP to targets beyond the limits of exhaustive
enumeration, aperture photometry can be extended to
sources traditionally considered too crowded for such
techniques, thereby broadening the range of scenarios in
which aperture photometry can be effectively applied.

(a) Aperture from enumeration overlaid on

stacked image

(b) Aperture from ResNet-18 overlaid on

stacked image

(c) Aperture from ResNet-18 overlaid on first

calibrated image

Figure 10. Qualitative comparison of aperture selection between enumeration and ResNet-18 for an infeasible case misclassified by the ViT model.
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We need to notice that the example as shown in
Figure 10 and Appendix does not guarantee that the
ResNet-18 model can always find a feasible aperture.
Meanwhile, we cannot simply assume that all the false
positive cases of the ViT model represent the error of
labels. The ResNet-18 model does not find feasible
apertures for other ViT false positive cases, which should
be considered as the failure cases of this method. In real
utilization, the logit threshold should be carefully chosen
to control the false positive rate.

Despite its advantages, DeepAP still has opportunities for
future improvements. Our training data set was based on
images from a single telescope-camera setup under specific
observing conditions. It is worth noting that DeepAP’s
performance depends on the training data set, and retraining
or fine-tuning will be necessary when applying it to different
telescopes or observational conditions. Transfer learning or
domain adaptation techniques could also be considered.
Furthermore, when performing relative flux calibration, the
aperture size should be consistent within a group of stars to
ensure that a comparable proportion of photons is measured
for each source. In future work, we can apply more advanced
numerical techniques like GPU acceleration to expand the
range of aperture enumeration and improve the training set’s
data quality. Meanwhile, an ensemble of images should be
used as input, with the model simultaneously determining both
the groupings for relative photometry and the optimal aperture
size for each group, making it more effective in practice.

In conclusion, DeepAP offers a practical, scalable, and high-
precision method to determine the feasibility and the aperture
size of aperture photometry, aligning well with the needs of
next-generation time-domain astronomy projects like LSST
and Tianyu. Its deployment in future surveys has the potential
to substantially enhance the scientific return by enabling
accurate and efficient light curve extraction at scale.

Acknowledgments

This work is supported by the Youth Program of the Natural
Science Foundation of Qinghai Province (2023-ZJ-951Q), and
Qinghai University Research Ability Enhancement Project
(2025KTSQ26).

Appendix
Effects of Contamination of Nearby Variable Sources

In this appendix, we conduct an injection test to illustrate the
effects of contamination caused by nearby variable sources and
the importance of choosing an aperture to avoid it. The target
shown in Figure 10 is used as an example.

In this test, we use two sets of aperture radii for the
injection test:

1. The aperture obtained through enumeration yields the
optimal SNR for the light curve, as shown in
Figure 10(a). The SNR of the light curve on the image
before injection, defined in Equation (1), is 9.89.
However, this aperture is contaminated by a nearby
source (Gaia DR3 2188697333838401152) located at the
lower right. In this case, the aperture parameters are
(rinn, rmid, rout) = (12.74, 24.20, 39.20).

2. The aperture obtained by the ResNet-18 model yields an
SNR of 5.11, which is lower than that of the enumerated
aperture. Here, the aperture parameters are
(rinn, rmid, rout) = (8.80, 10.36, 12.35). This aperture is
smaller, and therefore collects fewer photons than the
enumerated one. However, it avoids contamination from
the star in the lower right.

The injection δ upon the pixel (x, y) of the ith chopped
image is

( ) ( ) · ( )

· ( ) ( ) ( )

/=

+

i

A
x x y y

w

mag sin 2
506

100 1

exp
2

, A1c
c c

c

mag 5

2 2

2

where Ac = 11, xc = 93, yc = 44, and wc = 5 represent the
profile of the contamination star (Gaia DR3
2188697333838401152) in the lower right of Figure 10;
Δmag is the variational magnitude of the contamination star .
The original flux of the contamination source (G = 16.7870) is
about half that of the target source (G = 15.9808).

We calculate the SNR of a light curve obtained by these two
apertures at different Δmag. The results are shown in Figure A1.
The SNR of the light curve obtained from the enumeration
aperture decreases with respect to larger variation of the
contamination, while the aperture obtained by ResNet-18 is not
affected by the contamination. Meanwhile, the light curves at
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Figure A1. SNR comparison between ResNet-18 and the enumeration
aperture across different variations of the contaminating source.
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Δmag = 0 and Δmag = 3 are shown in Figure A2. As the
variability of the contaminating star increases, the flux extracted
by the contaminated aperture increasingly reflects the contami-
nant’s signal rather than that of the target source. In cases of high
contaminant variability (Δmag = 2.0), the extracted light curve
from the contaminated aperture even exhibits behavior opposite
to the expected signal, driven primarily by fluctuations in the
contaminant’s flux rather than the target’s. Therefore, the aperture
extracted by ResNet-18 is more robust to the contamination star
variation in this case.
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