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Abstract
The weakly supervised object localization task uses image-level labels to train object localization models. Traditional con-
volutional neural network (CNN)-based methods usually localize objects using a class activation map. However, the class
activation map usually suffers from the problem of activating a small part of the object that is most discriminative. Meanwhile,
the methods based on the Vision Transformer can capture long-range feature dependencies but tend to ignore local feature
details. In this paper, we innovatively propose a dual-branch contrastive learning (DBC)method that consists of a Transformer
and a CNN branch. The method can effectively separate the background and foreground of an image and fuse the features
of Transformer and CNN through contrastive learning. Specifically, the method separates the background and foreground
representations of the image using the initially generated class-agnostic activation maps. Then, the representations of the
same image from different branches form positive pairs for contrastive learning. The background and foreground represen-
tations from the same branch form negative pairs. Finally, the DBC method forces the model to separate the background
and foreground representations through negative contrastive loss and makes the model fuse the features of two branches
through positive contrastive loss. Experiments on the ILSVRC benchmark show that the proposed method can achieve a
Top-1 localization accuracy of 59.9% and a GT-known localization accuracy of 71.7%, which are better metrics than those
of the state-of-the-art methods with the same parameter complexity.

Keywords Deep learning · Computer vision · Weakly supervised object localization · Dual-branch network ·
Contrastive learning

1 Introduction

The object localization models based on convolutional neu-
ral networks (CNNs) require a large amount of accurate
annotations (i.e., bounding box labels) for training. However,
obtaining many complex annotations is time-consuming and
labor-intensive. To solve this problem, weakly supervised
object localization (WSOL) has received increasing atten-
tion because it enables the training of localization models
using only image-level labels [1]. The key to weakly super-
vised object localization is enabling the framework to learn
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the complete target region from image-level supervision sig-
nals during the learning process [2–4]. The current methods
are primarily based on either CNNs or vision transformer
architectures, each having its own advantages and disadvan-
tages.

CNN-based WSOL methods typically utilize a class acti-
vation map (CAM) [5] to generate object localization maps
for estimating bounding boxes. However, the activated object
region generated byCAM is generally smaller than the actual
object region because the model trained for classification
tends to focus on themost discriminative regions [6, 7].Many
studies have been conducted to address this problem, e.g.,
adversarial erasing [8–10], divergent activation [11–13] and
gradient-based CAM [14–16]. However, the inherent inabil-
ity of CNNs to capture the dependency of long-range features
is complicated and has not been fundamentally solved [7].
CNNextracts features throughconvolutionoperations,which
enables it to extract local features effectively, but it has dif-
ficulty capturing global cues (Fig. 1).
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Fig. 1 Comparison of activation maps between our method and C2AM method

With the success of the vision transformer (ViT) [17]
in the field of computer vision, researchers have realized
its ability to capture global cues. ViT divides the image
into patch tokens with positional embeddings and then pro-
cesses them through a cascaded block sequence containing
a self-attention mechanism [18] and a multilayer perceptron
(MLP). Benefiting from the self-attention mechanism, ViT
can learn long-range semantic correlations adaptively. Gao
et al. [7] proposed a token semantic coupled attention map
(TS-CAM) to introduceViT intoWSOL. TS-CAMgenerates
semantic-aware localization by integrating the semantic-
agnostic attention map of ViT with semantic-aware CAM,
resulting in a comprehensive activation domain. Unfortu-
nately, ViT easily ignores local feature details, making
it susceptible to irrelevant background interference. Since
CNNs and ViT each have strengths and weaknesses, some
studies have proposed leveraging the advantages of both
CNNs andViT. Peng et al. [19] proposedConformer,which is
a hybrid concurrent dual-branch structurewith a Transformer
branch and a CNN branch for target classification. As CNNs
and Transformers have the ability to capture features at dif-
ferent levels, the Conformer designs a feature coupling unit
that enables the fusion of the CNN and Transformer features.
However, the Conformer lacks fusion from the perspective of
the object localization activation map, as it is a classification
network.

In summary, CNNs prioritize local features while often
neglecting long-range feature associations, whereas Trans-
formers effectively capture long-range features but may
overlook local details. By integrating the local feature details

of CNNs with the global feature associations of ViTs, we can
achieve more precise object localization. However, owing to
the inherent structural differences between CNNs and ViTs,
simple feature fusion methods may not effectively leverage
the advantages of both architectures.

In recent years, contrastive learning methods [20–26]
have achieved excellent results in the field of unsupervised
classification and have been applied in other fields. Some
studies [27–29] on dual-branch contrastive learning indi-
cate that pulling positive sample representations closer in
high-dimensional feature space not only facilitates feature
fusionbut also preserves the distinct characteristics of the fea-
tures [30]. This is crucial for integrating the features of CNNs
and ViTs while highlighting the advantages of both architec-
tures. Furthermore, the approach of pushing negative sample
pairs apart effectively enhances feature separation between
the foreground and background [31]. Xie et al. [31] proposed
cross-image foreground background contrastive learning of
class-agnostic activation map (C2AM) for WSOL. C2AM
uses a similar background or foreground to form a posi-
tive pair and uses the background and foreground to form
a negative example pair. C2AM separates the background
and foreground via contrastive learning to extract accurate
bounding boxes. However, C2AM is limited by the inherent
shortcomings of CNNs. In addition, C2AMdoes not consider
semantic information when positive pairs are constructed on
the basis of similar foregrounds or backgrounds. Although
there are several comparative learning methods, there is no
comparative learning method using two-branch networks in
the WSOL domain.
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In this paper, we innovatively propose a dual-branch
contrastive learning (DBC) method that uses a hybrid dual-
branch network comprising a Transformer branch and aCNN
branch. The innovation of DBC lies primarily in employing
contrastive learning to achieve a more comprehensive fusion
ofCNNandTransformer featureswhile simultaneously sepa-
rating the foreground from the background, thereby enabling
accurate localization of the target. Through this approach,
we can leverage the efficiency of CNNs in processing local
features and spatial information, while also harnessing the
advantages of ViTs in capturing the global context and
long-range dependencies. Our method provides a novel per-
spective for the integration of CNNs and ViTs within the
framework of WOSL, and it has the potential to achieve
enhanced localization performance and improved general-
ization capabilities in complex scenarios.

Specifically, we generate the background and foreground
representations of the image using class-agnostic activation
maps extracted independently from the Transformer and
CNN branches. Since the Transformer branch and the CNN
branch tend to capture global and local features respectively,
the same image generates different foreground represen-
tations in the Transformer and CNN branches. However,
the foreground representations of different branches should
contain the same semantic information. Therefore, the rep-
resentations of the same image from different branches form
a positive pair. The background and foreground representa-
tions of an image form a negative pair for contrastive learning
because they contain different semantic information. The
representations of negative pairs are pushed apart by negative
contrastive loss to separate the background and foreground
regions in the class-agnostic activation map. We design a
positive contrastive loss to pull close the representations of
positive pairs which can comprehensively fuse local features
(CNN) and global features (Transformer). In this method,
the attention map of the Transformer branch can learn local
feature clues from the activation map of the CNN branch
to mitigate the background interference caused by the dis-
ruption of spatial topology. In addition, the activation map
of the CNN branch can learn global cues from the attention
map of the Transformer branch. Comprehensive experiments
on the CUB-200-2011 and ILSVRC datasets confirmed the
effectiveness of our method.

The contributions of our work are as follows:

• We propose a novel dual-branch contrastive learning
(DBC) for WSOL based on the hybrid concurrent dual-
branch network. This approach integrates the long-range
feature dependency ability of Transformers with the local
feature perception ability of CNNs.

• We design a novel positive contrastive loss function that
facilitates a more comprehensive integration of CNN and

Transformer features by pulling close the representations
of positive pairs.

• DBC achieves 59.9% Top-1 localization accuracy and
71.7% GT-known localization accuracy performance on
the ILSVRC dataset, which are better than the state-of-
the-art methods with the same parameter complexity.

2 Related work

CNN-based approaches for WSOL The objective of the
weakly supervised object localization (WSOL) [1] task is
to learn object localizations solely on the basis of image-
level annotations, without bounding box annotations. Zhou
et al. [5] first introduce the CAM intoWSOL. CAMproduces
the object activation map through the last fully connected
layer, which includes semantic-aware localization. Nouman
Ahmad et al. [32] propose Ghost-UNET++ for automatic CT
image dataset segmentation. However, the activated object
region generated byCAM is generally smaller than the actual
object region because the model trained for classification
tends to focus on the most discriminative regions [6, 7].
Numerous studies have been proposed to address the local-
ized activation of CAM.

Someworks [8–13] employ an erasing approach, in which
a portion of a picture is erased to push the models to focus
on expanded object sections. HaS [11] and CutMix [13]
randomly erase grid patches from input images. ACoL [9]
and ADL [10] adopt adversarial erasing and utilize adver-
sarially trained classifiers to reconstruct missing regions.
DANet [12] optimizes object localization through divergent
activation. SPG [33] and I2C [34] enforce classification net-
works to learn pixel correlations frommultiple layers through
constraints. Some works [14–16] improve the generation
of CAM by leveraging backpropagated gradients specific
to a particular class. Grad-CAM [15] summarizes the gra-
dient as the importance of neurons in aggregating feature
maps. Nouman and Öfverstedt et al. [35] evaluate three-layer
CT imaging using Grad-CAM for saliency analysis. Grad-
CAM++ [36] improves Grad-CAM by applying pixelwise
weighting to the output gradients. BagCAMs [16] proposes
the regional localizer generation (RLG) to form the final
localization map via effective weighting. Unlike other meth-
ods, PSOL [6], SPOL [37], SLT-Net [38] and C2AM [31]
divide WSOL into two independent subtasks: class-agnostic
object localization and object classification. C2AM [31]
adopts contrastive learning to disentangle the background
and foreground in the class-agnostic object localization task.
Many other approaches have also contributed. FAM [39]
proposes a module to emphasize foreground objects and a
module to explore discriminative parts. Zhu et al. [40] regard
WSOL as a domain adaption (DA) task and design a DA-
WSOL pipeline to enhance localization performance. Chen
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et al. [41] propose a computational method for improving
CAM using k-means clustering.

The aforementioned studies have proposed several meth-
ods to extend local activation to global activation. However,
the inherent defect of CNNs, which tend to capture partial
semantic features with local receptive fields, has not been
fundamentally resolved. Moreover, it is necessary to explore
how to balance image classification and target localization.

Transformer-based approaches for WSOL The vision trans-
former (ViT) [17] divides the image into patch tokens and
sends them to a cascaded block sequence containing the
self-attention mechanism [18]. Owing to the self-attention
mechanism, ViT can learn long-range semantic correlations
adaptively. However, it fails to capture local feature details
and neglects spatial coherence. Numerous studies have been
conducted to address these issues. TS-CAM [7] first intro-
duces ViT into WSOL and proposes a semantic coupling
strategy using Deit [42] as the backbone. TS-CAMgenerates
semantic-aware localization by integrating the semantic-
agnostic attention map of ViT and semantic-aware CAM.
Although TS-CAM obtains a larger activation domain, it
suffers from background interference. To address this issue,
TRT [43] proposes a re-attention mechanism to inhibit the
effects of background interference. The Token Priority Scor-
ing Module (TPSM) within the TRT framework generates
context-aware features through cumulative importance sam-
pling. The context-aware module is also utilized to generate
discriminative features. LCTR [44] considers cross-patch
information and designs a cue-digging module to improve
the local perception ability of global features in the presence
of long-range feature dependencies. SCM [45] implicitly
optimizes attention representations of the Transformer and
generates accurate activation maps on the basis of spatial
and contextual coherence.

Although the Vision Transformer addresses the global
activation issue, it still faces several challenges, such as
capturing local feature details and addressing irrelevant back-
ground interference caused by the destruction of spatial
topology.

Contrastive learning Contrastive learning operates on the
principle of pulling close samples from the positive pair
and pushing apart samples from the negative pair in feature
space [20–26]. On the basis of object class labels, a posi-
tive pair is formed by samples from the same class, whereas
a negative pair is formed by samples with different class
labels [46–48]. Wang et al. [48] propose two crucial proper-
ties of contrastive loss, i.e., the alignment of features from
positive pairs and the uniformity of the induced distribution
of the normalized features on the hypersphere. C2AM [31]
constructs negative pairs using cross-image foreground and
background representations. The positive pair is formed by

similar background and background or foreground and fore-
ground representations from two different images. However,
C2AM considers only the similarity of the foreground repre-
sentations and ignores the semantic information.

In other fields, methods that employ results generated by
twonetwork branches for contrastive learning exit.Xiang and
Chen [27] achieve credible underwater image enhancement
results by constraining semantic information consistency
between the clear image domain and the degraded image
domain through contrastive learning. Wang et al. [49] uti-
lize a contrastive learning branch to enhance the extraction
of discriminative features in the identification of abnormal
fasteners. Tian and Sun [50] introduce a cluster-based dual-
branch contrastive learning framework that synergistically
combines cluster-based unsupervised domain adaptation
with contrastive learning tomitigate the effects of upper-body
clothing color on person re-identification. Zhang et al. [28]
used a dual-branch contrastive method to compare each of
the two generated views with the original graph and then
jointly optimized them for graph data classification.Mansoor
Hayat and Supavadee Aramvith [51] enhance endoscopic
image super-resolution by promoting complex interactions
between features extracted from the left and right views of
endoscopic images. Chen et al. [29] propose a two-branch
long-tail recognition method consisting of an imbalanced
learning branch and a contrastive learning branch for long-
tailed dataset classification. However, relatively fewmethods
have been proposed specifically for the WSOL field. More-
over, the aforementioned approaches primarily employ the
same network architecture for the branch networks, which
does not adequately capitalize on the strengths of CNNs and
ViTs.

3 Methodology

In this section,wefirst present the preliminaries for the hybrid
dual-branch networkConformer. Then, we provide a detailed
description of our DBC method, as shown in Fig. 2.

3.1 Hybrid concurrent dual-branch network

For the Conformer [19], an Image I ∈ R
3×W×H is fed

into the stem module, which consists of convolution and
max pooling layers. The stem module extracts initial local
features F0 and feeds them to the dual branches. The Trans-
former branch, similar to ViT [17], constructs N patch tokens
TN ∈ R

N×D by projecting and flattening F0 and a class
token Tcla ∈ R

1×D , where D denotes the dimension of the
tokens. The tokens are fed into a sequence of L cascaded
Transformer blocks. Finally, the class token T L

cla is taken out
and provided as input to the MLP classifier. l indicates the
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Fig. 2 Overview of the proposed DBC, which consists of a Conformer backbone for feature extraction and a part of dual-branch contrastive learning

class token of the l-th Transformer block. The classification
probability of the Transformer branch is calculated as

pt = softmax(MLP(T L
cla)), (1)

where pt ∈ R
1×S and S denotes the number of classes.

MLP(·) denotes the classification function implemented by
the MLP block.

The CNN branch comprises L cascaded convolution
blocks. Owing to the misalignment of features between the
CNN and Transformer blocks, each CNN block establishes
interactions with the Transformer block through a feature
coupling unit (FCU) to effectively couple the local features
and global representations. For the output of the l-th con-
volution block Fl ∈ R

c×w×h , FCU first applies a 1 × 1
convolution to align the channel dimensions of the patch
embeddings for Fl , followed by downsampling to form the
patch tokens. Finally, the class token T L

cla from the Trans-
former branch is spliced and the patch embedding is added.
For the patch tokens from the Transformer block, FCU also
aligns their dimensions with the feature maps using a 1 ×
1 convolution. The tokens are subsequently upsampled and
added to the feature maps. By facilitating the interaction
between the feature maps and patch embeddings in this way,
the FCU enables the integration of features from both CNNs
andViTs. Finally, the CNN features FL are pooled and fed to
another classifier. The classification probability of the CNN
branch is calculated as

pc = softmax(MLP(GAP(FL))), (2)

where pc ∈ R
1×S . GAP(·) denotes the global average pool-

ing function. The prediction results are a simple summary
of the outputs from the two classifiers, and the classification

loss function is defined as

Lcla = CrossEntropyLoss(
pt + pc

2
, y), (3)

where y ∈ R
1×S denotes the ground truth label and

CrossEntropyLoss(·) denotes the cross-entropy loss func-
tion.

3.2 Dual-branch contrastive learning

Although the Conformer uses the FCU to couple the CNN
and Transformer features, it lacks fusion from the perspec-
tive of the object localization activation maps. The proposed
dual-branch contrastive learning (DBC) method combines
the localization maps of the dual branches by construct-
ing foreground features as positive pairs. Specifically, it first
extracts attention maps from the Transformer branch. More-
over, it extracts foreground feature maps from the CNN
branch and generates foreground activation maps through
convolution. Decoupling the attention and activation maps
yields the background and foreground vectors for the CNN
and VIT branches, respectively. The foreground vectors of
the different branches form a positive pair, whereas the
background and foreground vectors form negative pairs.
Contrastive learning by pushing apart the negative pairs and
pulling close the positive pairs in the feature space.

Attention map We denote t l ∈ R
(N+1)×D as the input

of the l-th Transformer block. The attention matrix Ml ∈
R
h×(N+1)×(N+1) of the multihead self-attention module for

the l-th Transformer block is calculated as

Ml = softmax

(
QlK l�
√
D/h

)
, (4)
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where Ql and Kl denote the queries and keys projected
from the input t l , respectively. � is the transpose operator
and h indicates the number of self-attention heads.Then, we
extract the class token vector Al ∈ R

1×N from the attention
matrix Ml . Since the CNN and ViT branches have differ-
ent feature scales, we normalize the attention map. The final
class-agnostic attention map is defined as

Ma = norm(�w×h(
1

L

∑
l

Al)), (5)

where �w×h denotes the reshape operation which converts
the attentionvector to the attentionmapMa ∈ R

w×h . norm(·)
denotes the normalization function.

Foreground activation map The output of the last convo-
lution block FL is applied to classification. To separate the
classification and location tasks,we extract high-level feature
maps F∗ ∈ R

D×w×h from the previous convolution blocks.
The class-agnostic foreground activation map is defined by
convolution as

Mc = norm(
∑
d

F∗
d ∗ k1,d), (6)

where d ∈ {1, 2, ..., D} denotes the d-th feature map. k1,d ∈
R
1×D×3×3 denotes the convolution kernel weights. SinceMc

characterizes the foreground region, the class-agnostic back-
ground activation map can be calculated as (1 − Mc). The
final output class-agnostic activation map, which is the local-
ization of the object, is calculated as

M = Ma + Mc. (7)

We utilize a special pooling operation to disentangle the
feature maps F∗ into background and foreground feature
vectors. The foreground activation vector fc ∈ R

1×D and
background activation vector bc ∈ R

1×D of the CNN branch
are formulated as

fc = GAP(F∗ ⊗ Mc),

bc = GAP(F∗ ⊗ (1 − Mc)),
(8)

where ⊗ denotes an element-wise multiplication operation.
The attention map can also be disentangled into a foreground
vector f t ∈ R

1×D and background vector bt ∈ R
1×D as

follows:

f t = GAP(F∗ ⊗ Ma),

bt = GAP(F∗ ⊗ (1 − Ma)).
(9)

Contrastive loss There is a significant disparity in semantic
information between the foreground and background. This
contrast holds true for the foreground and background of dif-
ferent images as well. Therefore, for both the within-image
and cross-image, the distance between the foreground and
background features in a high-dimensional space should be
greater. The representations of the foreground and back-
ground from any image form a negative pair, i.e., (fc,bc).
Consequently, there should be a greater separation between
the background representations and foreground representa-
tions in the feature space. The negative contrastive loss is
designed as

Lneg = Lc
neg + Lt

neg, (10)

Lc
neg = − 1

n2

n∑
i=1

n∑
j=1

log(1 − sim(fci ,b
c
j )),

Lt
neg = − 1

n2

n∑
i=1

n∑
j=1

log(1 − sim(f ti ,b
t
j )),

(11)

where sim(·) is a function used to calculate cosine similarity.
Lneg is composed of the loss function of the CNN branch
Lc
neg and Transformer branch Lt

neg . When i = j represents
the within-image, when i �= j represents the cross-image.

Traditional contrastive learning methods create positive
pairs by applying different image augmentation techniques
to the same image. In the dual-branch network, the CNN
and Transformer branches possess inherent characteristics
that predispose them to capture local and global features,
respectively. As a result, these two branches produce distinct
foreground representations for the same image. Neverthe-
less, the semantic information contained in the foreground
representations of identical images should be consistent.
Therefore, the foreground features fromdifferent branches of
the same image form positive pairs with the same semantics.
The positive contrastive loss is formulated as

Lpos = −1

n

n∑
i=1

log(sim(fc, f t )). (12)

By employing this approach to construct positive pairs,
the integration of two branch features can be enhanced com-
prehensively. The attention map of the Transformer branch
can learn local feature clues from the CNN branch, whereas
the activation map of the CNN branch can learn global clues
from the Transformer branch.
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Algorithm 1 Workflow of DBC on conformer.
Require: Input image I , Backbone con f ormer(·)
1: Calculating classification probability p with backbone

con f ormer(I ).
2: Generating attention map Ma by (5).
3: Obtaining high-level feature maps F∗ with convolution blocks.
4: Generating foreground activation map Mc by (6).
5: Generating final localization map M by (7).
6: Generating foreground vectors and background vectors by (8) and

(9).
7: Calculating positive contrastive loss Lpos and negative contrastive

loss Lneg by (10) and (12).
8: Calculating final loss L and backward propagating.
Ensure: Localization Map M , Classification Probability p.

The final loss function L is defined as

L = Lcla + λneg ∗ Lneg + λpos ∗ Lpos, (13)

where λneg and λpos represent the weights of loss function.
The negative contrastive loss Lneg is applied to direct the
class-agnostic activation map from the dual branch to sep-
arate the background and foreground regions. Additionally,
the final class-agnostic activation map fuses the features of
the CNN and ViT branches using positive contrastive loss
Lpos . Algorithm 1 illustrates the workflow of DBC for object
localization based on a Conformer model.

4 Experiments

4.1 Experimental settings

Dataset We evaluate the proposed method on two com-
monly used benchmarks, i.e., CUB-200-2011 [52] and
ILSVRC [53]. CUB-200-2011 is a fine-grained bird dataset
consisting of images of 200 bird species. It includes a train-
ing set and a test set. The training set and test set contain
5,994 and 5,794 images, respectively. ILSVRC consists of a
training set of over 1.2 million images and a validation set
of 5,000 images, encompassing 1,000 categories. The model
is fine-tuned using only category labels from the training set
and evaluated on the validation set.

Evaluation metrics Following [5, 54], we adopt the Top-
1/Top-5 localization accuracy (Top-1/Top-5 Loc.Acc), GT-
known localization accuracy (GT-known Loc.Acc) and
maximal box accuracy (MaxBoxAccV2) [55] as evaluation
metrics. For GT-known localization, a prediction is consid-
ered correct when the intersection over union (IoU) between
the predicted box and the ground-truth box is greater than
50%. Top-1/Top-5 localization is correct when the predicted
Top-1/Top-5 classification is correct andwhen theGT-known
localization is correct.

Implementation details The Conformer [19] is adopted
as the backbone and pre-trained on ILSVRC. The input
images are resized to 256×256 pixels and randomly cropped
to 224×224 pixels. We apply AdamW [56] with ε=1e-8,
β1=0.9, β2=0.99 and a weight decay of 5e-4 during training.
For CUB-200-2011, we use a batch size of 64 and an initial
learning rate of 5e-4 to train the model for 60 epochs with
one Nvidia Tesla V100 GPU. For ILSVRC, the training pro-
cedure lasts 20 epochs with a learning rate of 1e-6 and batch
size of 128 on two Nvidia Tesla V100 GPUs. We evaluate
the performance of the model on the validation set in each
epoch. The model parameters of the best Top-1 Loc.Acc
performance will be saved.

4.2 Performance

Localization performance As shown in Table 1, we com-
pare our method using Conformer-Ti and Conformer-S [19]
as the backbones with the state-of-the-art (SOTA) meth-
ods on the CUB-200-2011 dataset. Our method employing
Conformer-S as a backbone achieves Top-1, Top-5, and Gt-
Known localization accuracy of 80.9%, 94.1% and 97.3%,
respectively. Notably, our method also achieves 90% Gt-
Known Loc.Acc on the Comformer-Ti backbone. Compared
with the baseline method TS-CAM [7] on the Conformer-S
backbone, our method outperforms it by 4.0%, 3.3% and
3.3% in terms of Top-1 Loc.Acc, Top-5 Loc.Acc and Gt-
Known Loc.Acc. Furthermore, our method is superior to
the single-stage CNN-based methods and ViT-based meth-
ods in all the metrics. DBC outperforms the two-stage SOTA
method (C2AM) in terms of the Gt-Known Loc.Acc and
Top-5 Loc.Acc.

Table 2 compares DBC with other methods on the
ILSVRC.Ourmethod achieves Top-1 Loc.Acc of 59.9% and
59.4% are obtained for the Conformer-Ti and Conformer-S
backbones, respectively. In addition, DBC using Conformer-
Ti as the backbone achieves the GT-known Loc.Acc of
71.7% and Top-5 Loc.Acc of 69.2%. Compared with TS-
CAM, DBC achieves performance gains of 6.5% and 4.1%
in terms of Top-1 and Gt-Known Loc.Acc. Compared with
the SOTA single-stage CNN-based methods and ViT-based
methods, DBC outperforms them by 3.8% and 1.1%, respec-
tively, in terms of Top-1 Loc.Acc. Compared with the
two-stage CNN-based SOTA methods, DBC achieves per-
formance gains of 0.6% for the Top-1 Loc.Acc and 2.7% for
the Gt-Known Loc.Acc.

In addition, we use the MaxBoxAccV2 metric [55] for
a comparison with the other SOTA methods in Table 3.
Our method has a significant advantage over other methods,
achieving a 4.5% improvement.
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Table 1 Localization accuracy on the CUB-200-2011 test set

Method Backbone CUB-200-2011
Top-1 Loc Top-5 Loc GT-known Loc

CAM [5] VGG16 44.2 52.2 56.0
ACoL [9] VGG16 45.9 61.0 –
ORNet [57] VGG16 67.7 80.8 86.2
BAS [58] VGG16 71.3 85.3 91.1
SPG [33] InceptionV3 46.6 59.4 –

I2C [34] InceptionV3 55.9 68.3 72.6
FAM [39] InceptionV3 70.7 – 87.3
CREAM [59] InceptionV3 71.8 86.4 90.4
BagCAMs [16] InceptionV3 60.1 – 89.8
ADL [10] ResNet50-SE 62.3 80.3 –
DA-WSOL [40] ResNet50 66.7 – 81.8
BGC [60] ResNet50 53.8 65.8 69.9
PSOL [6] DenseNet161+EfficientNet-B7 77.4 89.5 93.0
SPOL [37] ResNet50+EfficientNet-B7 80.1 93.4 96.5

C2AM [31] DenseNet161+EfficientNet-B7 83.3 92.7 94.5
TS-CAM [7] Deit-S 71.3 83.8 87.7
SCM [45] Deit-S 76.4 91.6 96.6
TRT [43] Deit-B 76.5 88.0 91.1
LCTR [44] Deit-S 79.2 89.9 92.4
Ours Conformer-Ti 77.2 92.4 97.0
TS-CAM [7] Conformer-S 77.2 90.9 94.1
Ours Conformer-S 80.9 94.1 97.3

The best performance is shown in bold

Table 2 Localization accuracy on the ImageNet-1K validation set

Method Backbone ILSVRC
Top-1 Loc Top-5 Loc GT-known Loc

CAM [5] VGG16 42.8 54.9 59.0
ACoL [9] VGG16 45.8 63.3 –
ORNet [57] VGG16 52.1 63.9 68.3
BAS [58] VGG16 53.0 65.4 69.6
SPG [33] InceptionV3 48.6 60.0 64.7

I2C [34] InceptionV3 53.1 64.1 68.5
FAM [39] InceptionV3 55.2 – 68.6
CREAM [59] InceptionV3 56.1 66.2 69.0
BagCAMs [16] InceptionV3 53.9 – 71.0
ADL [10] ResNet50-SE 48.5 – –
DA-WSOL [40] ResNet50 55.8 – 70.3
BGC [60] ResNet50 53.8 65.8 69.9
PSOL [6] DenseNet161+EfficientNet-B7 56.4 66.5 69.0
SPOL [37] ResNet50+EfficientNet-B7 59.1 67.2 69.0

C2AM [31] DenseNet161+EfficientNet-B7 59.3 66.7 68.2
TS-CAM [7] Deit-S 53.4 64.3 67.6
TRT [43] Deit-B 58.8 68.3 70.7
SCM [45] Deit-S 56.1 66.4 68.8
ViTOL [54] Deit-B 57.6 – 71.3
LCTR [44] Deit-S 56.1 65.8 68.7
Ours Conformer-Ti 59.9 69.2 71.7
TS-CAM [7] Conformer-S 57.6 65.3 67.1
Ours Conformer-S 59.4 67.3 69.3

The best performance is shown in bold
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Table 3 MaxBoxAccV2 on the CUB-200-2011 dataset

Method Backbone MaxBoxAccV2

BagCAMs InceptionV3 76.9

BGC ResNet50 75.9

C2AM ResNet50 83.8

ViTOL Deit-B 69.2

TRT Deit-B 82.1

Ours Conformer-Ti 86.6

Parameter complexity Table 4 shows the parameters of dif-
ferent methods on the CUB-200-2011 dataset. Compared
with the elaborate methods, our method is simpler and only
requires an additional convolutional layer. This indicates
that only a few extra parameters are required for superior
results. Under similar parameter complexity, ourmethod out-
performs TS-CAM. Compared with the two-stage methods
(e.g., PSOL [6] and C2AM [31]), our method employs only
a single backbone and has significantly fewer parameters.
Specifically, DBC achieves better GT-known Loc.Acc than
C2AM, which uses only approximately 25% of the parame-
ters.

Visualization In Fig. 3, we visualize the final localization
maps of CAM [5], TS-CAM [7] and our method on the
CUB-200-2011 and ILSVRC datasets which are based on
Conformer-S [19]. As shown in the figure, although the
Conformer fuses the features of the Transformer and CNN
via the FCU module, CAM also exclusively focuses on the
most discriminative region of the object. This finding indi-
cates that relying solely on the FCU to fuse features is
insufficient for the WSOL on the Conformer. In contrast
to CAM, due to the destruction of spatial topology, TS-
CAM is susceptible to background interference despite its
ability to capture long-range features. Furthermore, sinceTS-
CAM combines semantic-aware CAM in a simple way, the
problem of local activation is not completely solved. Com-
pared with the former methods, our method integrates local
feature details to achieve precise localization while also cap-
turing long-distance cues more effectively. This approach
not only activates the entire object region but also prevents

Table 4 Comparison of parameters on the CUB-200-2011 dataset

Method Backbone #Params(M) Top-1 Loc GT-known Loc

CAM VGG-16 19.6 44.2 56.0

TS-CAM Deit-S 25.1 71.3 87.7

C2AM DenseNet161+
EfficientNet-
B7

94.8 83.3 94.5

Ours Conformer-Ti 23.0 80.9 97.3

background interference. In addition, through comparative
learning, our method can significantly differentiate between
the background and foreground compared with TS-CAM.

We visualize the activation maps from the CNN branch
and the attention maps from the Transformer branch at dif-
ferent epochs, as shown in Fig. 4. The CNN branch gradually
learns long-range feature associations from the Transformer
branch (upper row of first image). In the second image,
the attention map of the Transformer branch shows a grad-
ual decrease in activation for irrelevant foreground elements
(such as straw), whereas in the third image, the activation
level for the foreground targets increases. This indicates that
the attention maps of the Transformer branch learn local
feature details from the CNN branch and mitigate back-
ground interference. This demonstrates that our foreground
contrastive learning approach facilitates mutual learning of
the necessary long-range and local features between theCNN
and Transformer branches.

4.3 Ablation study

In this section, we conduct ablation studies to evaluate
the effectiveness of our method, utilizing Conformer-S as
the backbone. In Table 5, we compare our methods under
different hybrid strategies and architectures, including a ver-
tical hybrid network that first extracts features using ResNet
before feeding them toViT, aswell as a straightforward archi-
tecture that employs ResNet and ViT branches without any
feature fusion.Ourmethod achieves good localizationperfor-
mance with the simple vertical hybrid network, achieving a
94.7%GT-known Loc.Acc on CUB and 66.8% on ILSVRC;
however, it is constrained by the classification performance.
In the straightforwardparallel networkusingResNet andViT,
the lack of feature fusion results in significant misalignment
between the features from the two branches.

In Table 6, we explore the effects of the loss functions.
Compared with only using the classification loss Lcla , the
employment of positive contrastive lossLpos or negative con-
trastive loss Lneg can significantly improve the localization
performance of class-agnostic activation maps. A better per-

Table 5 Comparison of different architectures

Backbone CUB-200-2011 ILSVRC
Top-1 LocGT LocTop-1 LocGT Loc

Resnet50+ViT-S
(Vertical Hybrid)

72.2 94.7 55.4 66.8

Resnet50+ViT-S
(Dual Branch)

69.0 91.6 51.7 61.4

Conformer-Ti 77.2 97.0 59.9 71.7

Conformer-S 80.9 97.3 59.4 69.3
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Fig. 3 Visualization of different methods on CUB-200-2011 and ILSVRC datasets

Fig. 4 Visualization of the activation maps of the CNN branch and the attention maps of the Transformer branch at different epochs

Fig. 5 Visualization of the
effects of loss functions on
CUB-200-2011 dataset

123



Dual-branch contrastive learning for weakly supervised object localization Page 11 of 16   618 

Table 6 The effects of loss functions on CUB-200-2011 test set

Lcla Lpos Lneg Top-1 Loc Top-5 Loc GT-known Loc

√
79.2 91.9 94.8√ √
80.4 93.5 96.7√ √
80.1 93.4 96.5√ √ √
80.9 94.1 97.3

The bold text indicates the best performance

formance can be achieved by using both positive contrastive
loss and negative contrastive loss. This suggests that the two
losses independently improve model localization accuracy
through different mechanisms. As illustrated in the second
column of Fig. 5, without the positive contrastive loss, the
activation patterns between the foreground activation map of
CNN branch and the attention map of Transformer branch
exhibit significant divergence. This demonstrates that the
positive contrastive loss critically guides the model to coher-
ently integrate long-range dependencies (captured by the
Transformer) with localized details (extracted by the CNN).
When the negative contrastive loss is removed (third col-
umn), the CNN and Transformer branches exhibit similar
activation patterns.However, this configuration demonstrates
incomplete discrimination between foreground and back-
ground regions(e.g., background interference observed in
the tail region). This observation suggests that the neg-
ative contrastive loss plays a critical role in guiding the
model to disentangle foreground features from background
by explicitly enforcing divergence between foreground and
background representations. By utilizing both positive con-
trastive loss Lpos and negative contrastive loss Lneg , it is
possible to integrate long-range features and local details
while emphasizing the foreground object.

We constructed negative pairs using foreground and back-
ground samples from all images. In Table 7, we compare this
approach (cross-image) to one that uses only the foreground
and background from the same image to form negative pairs
(within-image). When negative pairs are constructed using
only the foreground and background from the same image,
the ability of themodel to distinguish between the foreground
and background weakens due to a lack of sufficient negative
samples for comparison.

Table 7 Performance of different negative pair construction methods
for contrastive learning using Conforme-S as the backbone

Negative pair Top-1 Cls Top-1 Loc GT-known Loc

Cross-image 82.7 80.9 97.3

Within-image 82.3 75.4 91.4

Table 8 Localization accuracy of class-agnostic activation maps from
different branches on CUB-200-2011 test set

Branch Top-1 Loc Top-5 Loc GT-known Loc

Transformer(Ma) 81.1 94.3 97.6

CNN(Mc) 80.4 93.5 96.9

Transformer+CNN(Ma + Mc) 80.9 94.1 97.3

Table 8 presents a comparison of the localization accu-
racy achieved by the class-agnostic activation maps obtained
from the different branches. From the experimental results,
there is little difference in using the class-agnostic activa-
tion maps from the Transformer or CNN branch alone as the
output. This indicates that both branches learn features from
another branch. The output combines the localization results
of the dual branches by adding the category-agnostic acti-
vation maps together. This allows the output to consider the
features of both the Transformer and CNN branches.

We evaluate the effects of hyperparameters λpos and λneg
in Fig. 6. λpos and λneg are the weights of the contrastive
losses Lpos and Lneg , respectively. Our method achieves the
best performance when λpos = 1.0 and λneg = 0.1. DBC
is sensitive to changes in the weight of the loss function.
Furthermore, we compare the performance under different
convolution kernel sizes in Table 9. The experimental results
show that a convolution kernel size of 3×3 achieves better
performance.

4.4 Discussion of details

Computational efficiency We present the parameter count,
MACs, memory usage, and training speed of the different
backbones in the Table 10. Our method employs Conformer-
Ti and Conformer-S as the backbones, with parameter
counts of 23.0 million and 36.6 million, respectively. The
number of multiply accumulate operations (MACs) is 5.2
billion for Conformer-Ti and 10.6 billion for Conformer-
S. The memory required for inference is 161.8 MB for
Conformer-Ti and 309.7 MB for Conformer-S. We trained
the Conformer-Ti and Conformer-S models with a batch
size of 64, requiring approximately 34 seconds and 55
seconds per epoch, respectively. Compared with the two-
stage SOTA method C2AM that employs DenseNet and
EfficientNet backbones, our approach achieves a reduced
total parameter count (23.0 vs. 28.5+66.3 = 94.8 M). Cru-
cially, C2AM’s requirement for two independent networks to
perform distinct tasks necessitates concurrent memory allo-
cation for both architectures, whereas our unified framework
demonstrates 73% lower memory consumption (161.8 vs.
156.6+448.6 = 605.2 MB). These advantages collectively
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Fig. 6 Evaluation of the hyperparameters λpos and λneg on CUB-200-2011 dataset

enable deployment on resource-constrained devices without
compromising performance. Also in terms of time to train
an epoch our method is shorter overall (34s vs. 101s+55s),
which means our method is less expensive to train. The com-
bined parameter/memory/training-time advantages position
our method as a cost-effective solution for practical deploy-
ment scenarios.

Foreground-background separation results We conduct
tests on the augmented PASCALVOC2012 [61] dataset pro-
vided by SBD [62]. This is a general semantic segmentation
dataset that includes 1 background class and 20 foreground
object categories. We also trained using only class labels to
generate background activation maps. In Table 11, we calcu-
late the intersection over union (IoU), precision, and recall for
the foreground andvisualize the results in Fig. 7. The baseline
method C2AM constructs positive and negative pairs solely
from the features in the CNN. This limitation results in insuf-
ficient attention to long-range features. Additionally, C2AM
lacks labels for the foreground regions, preventing it from
determining whether the extracted feature vectors represent
the foreground or the background. Our method uses atten-
tion maps, which typically highlight the activation of the
foreground, serving as a guide for distinguishing between
the foreground and background in separated features. This

Table 9 Performance under different convolution kernel sizes on CUB-
200-2011 test set

Kernel size Top-1 Loc Top-5 Loc GT-known Loc

1 × 1 79.1 93.5 96.7

3 × 3 80.9 94.1 97.3

5 × 5 79.2 92.6 95.6

The bold text indicates the best performance

enables a clear differentiation between the foreground and
background.

Hyperparameter selection Combinedwith the ablation exper-
iments on the loss function, increasing λpos can guide the
model to improve the integration of the local and global fea-
tures, whereas increasing λneg directs the model to focus
more on distinguishing between the foreground and back-
ground. λpos and λneg can be adjusted on the basis of
the characteristics of the dataset to accommodate different
data distributions. For sampleswhere distinguishing between
the foreground and background is more difficult, the value
of λneg can be increased. Conversely, for samples with
long-range semantic relationships, the value of λpos can be
increased. Through systematic grid search experiments for
hyperparameter optimization, we empirically identified that
configurations maintaining a a setting of λpos :λneg = 10:1
consistently deliver superior localization performance. This
phenomenon can be attributed to the asymmetric sample in
contrastive pair construction: The negative contrastive loss
engages all foreground-background feature pairs (N 2), while
the positive loss utilizes only cross-branch foreground pairs
(N ). Consequently, the negative loss necessitating down-
weighting to prevent dominance in the multi-task learning
framework.

Table 10 Parameter count, MACs, memory usage, and training time of
different backbones

Backbone #Params
(M)

MACs
(G)

Memory
(MB)

Training
Time(64/s)

DenseNet161 28.5 7.8 156.6 101

EfficientNet-B7 66.3 5.3 448.6 55

Conformer-Ti 23.0 5.2 161.8 34

Conformer-S 36.6 10.6 309.7 55
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Table 11 Background segmentation performance on the VOC dataset

Method IoU Prec. Recall

C2AM 85.5 92.6 91.8

Ours 85.9 90.7 94.2

4.5 Error analysis

We analyzed all 127 images with localization errors in the
CUB-200 test set(5794 images) in Fig. 8. We categorized the
causes of errors as follows: object occlusion, water reflec-
tion, partial activation, irrelevant interference, low resolution,
multiple instances, and label errors. The occlusion of objects,
such as branches, divides the target into two parts, making it
difficult to activate the non-discriminative regions of the tail.
The reflections on the water surface share the same features
as the object, which is difficult to address by class label-
ing alone. Partial activation is usually caused by omissions
for narrow tails. Irrelevant interference is due to misrecog-
nition from co-occurring foregrounds. Because the output
localization map is a low-resolution image of size 14×14, it
leads to larger activation maps for smaller objects in some
of the images when they are interpolated to high resolu-
tion. Images with multiple instances and label errors have
annotation issues; however, the localization of the objects is
correct. In summary, subsequent research directions can be

directed toward improving the semantic discontinuity caused
by occlusion.

5 Conclusion

In this work, we propose dual-branch contrastive learning
on hybrid concurrent dual-branch networks to merge the
strengths of Transformer and CNNs for weakly supervised
object localization. DBC exploits the consistency of features
across different branches. The foregrounds from different
branches of the same picture form positive pairs and the
background and foreground from different images form neg-
ative pairs. The background and foreground regions of the
class-agnostic activation map are distinguished by pushing
apart the representations of foreground and background in
the feature space. DBC effectively integrates the long-range
feature dependency and local feature details by pulling close
the representations of dual branches to generate accurate
localization. Extensive experiments conducted on the CUB-
200-2011 and ILSVRC2012 datasets demonstrate that our
method presents a viable approach for enhancing localiza-
tion performance.

Our method has several hyperparameters and is sensitive
to the hyperparameters of the loss function. Therefore, future
work needs to focus on designing a more effective method

Fig. 7 Visualization of background cues on the VOC dataset
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Fig. 8 Visualization of error analysis on CUB on CUB-200-2011

for integrating the loss function. In addition, it is also an
important work to improve the semantic discontinuity caused
by occlusion.
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