
Computers & Graphics 119 (2024) 103875
Contents lists available at ScienceDirect

Computers & Graphics

journal homepage: www.elsevier.com/locate/cag

Technical Section

Edit propagation via color palettes✩

Zi-Xun Xia a, Jian-Yu Hao a, Kang Li a, Ao-Xiang Tian a, Zheng-Jun Du a,b,∗

a Department of Computer Technology and Application, Qinghai University, Xining, 810016, China
b Qinghai Provincial Key Laboratory of Media Integration Technology and Communication, Xining, 810016, China

A R T I C L E I N F O

Keywords:
Edit propagation
Color palette
Optimization
Color editing

A B S T R A C T

The ability to ease operation and real-time feedback to image editing has attracted increasing attention in our
everyday lives. Existing edit propagation approaches typically formulate the color editing task as a quadratic
energy optimization problem, which is computationally expensive and requires a lot of user interactions. To
address this problem, in this paper, we propose a novel edit propagation method based on color palette.
We first extract a color palette from the input image, and then calculate the mixing weights of the image
pixels with respect to the extracted palette. Finally, we solve for an edited palette according to user edits, to
propagate local edits to the whole image. Our main contributions include formulating the edit propagation as
a palette-based optimization problem that can be solved efficiently, and requiring only fewer user interactions
than existing methods. We have demonstrated our method for color editing on a wide range of examples.
Compared to existing methods, our approach is more efficient and friendly for novice users due to its ease of
interaction.
1. Introduction

Color editing is an active research topic in the fields of image and
video processing, computer vision, and computer graphics, which has
been widely used in film production, advertising design, digital art cre-
ation, etc. Edit propagation is a well-known technique in color editing,
which provides the user with an intuitive interface and automatically
propagates sparse user edits to the whole image. After over a decade of
development, edit propagation has made significant progress in color
editing.

Traditional approaches [1–6] typically formulate edit propagation
as a quadratic energy optimization problem. It needs to solve a large-
scale linear system. It is time-consuming and storage costly even for a
moderate-sized input image, which limits the practical use for large-
size input. Alternatively, several recent methods [7–9] speed up edit
propagation with interpolation or data-drive learning methods. While
it reduces the processing time significantly, it requires the user to
provide more fine-tuned strokes to achieve desirable results, which is
not friendly for novice users to learn and use.

To address these problems in edit propagation, we present in this pa-
per a palette-based edit propagation method that effectively propagates
user edits throughout the image and requires less interaction.

Palette-based color editing [10–15] is another well-studied tech-
nique in color editing. In this field, a color palette is typically defined
as a small set of colors that express the main color distribution of an

✩ This article was recommended for publication by H. Fu.
∗ Corresponding author at: Department of Computer Technology and Application, Qinghai University, Xining, 810016, China.
E-mail address: dzj@qhu.edu.cn (Z.-J. Du).

image. With the extracted color palette, pixels in the input image can
be efficiently encoded as a linear combination with respect to the color
palette. In color editing, the user adjusts the color of the input image by
modifying the color palette. These methods have become increasingly
popular in recent years due to their computational efficiency and ease
of use. However, existing palette-based methods still have a primary
limitation: it does not support direct editing of the image. Considering
both salience and simplification, the extracted palette typically contains
fewer colors. As a result, if one object’s color is not present in the
palette, the user has to seek and modify several palette colors that could
affect that object, to recolor the image.

The intuitive nature of edit propagation, together with the computa-
tional efficiency of the palette-based approach, inspired us to propose a
novel palette-based edit propagation method. We follow Tan et al. [11]
to employ a simplified convex hull in RGB space to present the color
palette of a given image. Then, we calculate the mixing weights of each
pixel to the extracted palette by mean value coordinates interpolation,
so that each pixel can be naturally expressed as a convex combination
of the palette colors. Instead of modifying the color palette to recolor
the input image in most existing methods, we allow the user to put
sparse edits on pixels directly, and then propagate it to the whole
image. We formulate the edit propagation as a simple optimization
problem that can be solved efficiently. A wide range of examples have
demonstrated the effectiveness of our method.

The main contributions of this paper can be summarized as follows:
https://doi.org/10.1016/j.cag.2024.01.002
Received 26 September 2023; Received in revised form 5 January 2024; Accepted
Available online 8 January 2024
0097-8493/© 2024 Elsevier Ltd. All rights reserved.
5 January 2024

https://doi.org/10.1016/j.cag.2024.01.002
https://www.elsevier.com/locate/cag
https://www.elsevier.com/locate/cag
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cag.2024.01.002&domain=pdf
mailto:dzj@qhu.edu.cn
https://doi.org/10.1016/j.cag.2024.01.002

Z.-X. Xia, J.-Y. Hao, K. Li et al. Computers & Graphics 119 (2024) 103875

i
t
a
e
l

2

2

t
e
a
g
p
f
t
s
i
p
s
a
e
a
p
e
t
g
e
h
A
c
o

o
d
d
p
c
t
a
d
r

2

i
a
t
r
t
w
t
e
R
t

• We present a palette-based edit propagation that enables direct
user interaction with images for color editing, which can be
solved more efficiently and requires less interaction than previous
methods.

• We develop a graphical user interface (GUI) for color editing,
enabling non-expert users to easily engage in real-time image
editing without extensive learning or training.

The rest of the paper is organized as follows: First, we give a brief
ntroduction to related works. Second, we provide a background of
he proposed method. Next, we describe the details of the proposed
lgorithm. Then, we provide extensive experiments to illustrate the
ffectiveness of our approach. At last, we conclude and discuss the
imitations of our paper.

. Related works

.1. Edit propagation

Propagating user-sparse edits to the whole image is a well-known
echnique with a wide range of applications, such as interactive color
diting, colorization, material editing, tone mapping, etc. Traditional
pproaches automatically propagate user edits to the rest of the image,
uided by the rule that similar pixels should receive similar edits. The
ioneering work of edit propagation was proposed by Levin et al. [1]
or grayscale image colorization. It propagates the colors of user strokes
o adjacent pixels with the assumption that pixels of similar lightness
hould have similar colors. Later, Lischinski et al. [16] extended the
dea of edit propagation for tonal adjustment. Pellacini et al. [2]
roposed a novel approach to edit spatially-temporally varying mea-
ured materials through an optimization that enforces similar edits are
pplied to areas with a similar appearance. An et al. [3] first introduced
dit propagation into interactive color editing. They measured the
ffinities in all pixel pairs to enable long-range propagation. While
owerful, all these methods are computational and storage costly. Xu
t al. [5] applied the K-D tree in edit propagation for acceleration
o reduce time and memory costs. This approach speeds up the al-
orithm significantly, but real-time feedback was still challenging. Li
t al. [7] formulated edit propagation as an interpolation problem in
igh-dimensional affinity space, and achieved real-time color editing.
lternatively, Bie et al. [17], Xiao et al. [18], and Li et al. [9] adopted
lustering and sampling-like methods to reduce the computational costs
f previous approaches further.

With the advance of deep learning, recently some approaches based
n neural networks were proposed. Endo et al. [19] proposed the first
eep learning-based edit propagation, ‘‘DeepProp’’, that extracts high-
imensional features with a convolution neural network (CNN) for edit
ropagation. Gui et al. [20] formulated edit propagation as a multi-
lass classification problem and employed a fully convolution network
hat can be trained end-to-end, to extract the visual and spatial features
nd predict the resulting image. Although these methods could achieve
esirable results, they are sensitive to user edits, and cannot generate
esulting images in real-time.

.2. Palette-based image recoloring

Palette-based image recoloring is a recent paradigm for color edit-
ng. The first work was proposed by Chang et al. [10]. They employed
modified K-means clustering to extract the palette, and then transfer

he color of the changed palette to the whole image by using the
adial basis function (RBF) interpolation. Zhang et al. [21] generalizes
his method with a decomposition optimization approach and shows a
ide range of applications such as color transfer and image segmen-

ation, etc. Tan et al. [11] proposed a geometric method for palette
xtraction. They compute a simplified convex hull of an image in
GB space and use its vertices as the color palette. Color editing is
hen achieved by calculating the mixing weights of each pixel to the

2

extracted palette. Tan et al. [13] extended Tan et al. [11] with a simple
and efficient method where they extract the color palette and compute
the corresponding mixing weights in RGBXY space for better spatial
consistency. However, the simplified convex hull obtained using the
above methods often has vertices far from existing colors, resulting
in poor color representation. To address this issue, Wang et al. [15]
presented an optimization approach to improve the representativeness
of the palette, and employ mean value coordinates (MVC) [22] inter-
polation to achieve efficient and smooth recoloring. Alternatively, Sun
et al. [23] presented a novel coarse-to-fine convex hull construction
technique involving auxiliary vertices. Initially, they create a coarse
convex hull with direct image pixels, resulting in a compact shape yet
not encompassing all pixels. Then, they integrate auxiliary vertices into
the coarse hull, generating a fine convex hull that includes more image
pixels. This approach ensures higher reconstruction accuracy and better
representativeness in recoloring.

Recently, Du et al. [24] further extended this method to video
editing by computing a color palette in RGBT space. It achieves natural
and smooth recoloring over time. In addition, Aksoy et al. [12] treated
each palette color as a Gaussian distribution, and decomposed the
input into a set of layers for recoloring. Zhang et al. [25] proposed
a novel blind color separation model to extract the color palette and
calculate the mixing weights simultaneously. Chao et al. [26] in-
troduced the ‘‘ColorfulCurve’’ for palette-aware lightness control and
image space color editing. It extracts a hue-chroma palette and builds
palette-based tone curves, allowing sparse, per-palette-color control of
lightness across the image. Their method supports direct pixel color
editing especially when the colors to be edited do not appear in the
palette. Their approach also supports palette editing, and typically the
palette size is limited for ease editing, making it difficult to ensure
the sparsity of pixels’ mixing weights. Although they devised a sparsity
term to restrict more palette colors from changing, a single palette color
can still influence extensive regions, leading to undesirable global color
changes in recoloring. Our approach is similar to Chao et al. [26] in
interaction, the main difference is that our method allows the palette to
contain more colors while adding additional correlation constraints in
the optimization process of the edited palette, thereby achieving better
local control during recoloring.

Deep learning-based methods have made advancements in the field
of palette-based image recoloring. For instance, Cho et al. [27] intro-
duced ‘‘PaletteNet’’, which adopts a content-aware approach to adjust
the color of an input image matching a user-defined palette. How-
ever, this algorithm only supports a fixed-size color palette. Akimoto
et al. [28] leveraged a U-Net to estimate the mixing weights of a given
image and the corresponding color palette. However, this approach
often produces blending weights, and the mixing weights are not
sparse enough, resulting in less localized color editing. Chao et al. [29]
proposed a semantic segmentation-based method for image recoloring,
which involves complex user interactions and heavily depends on
the semantic segmentation model, often lacking sufficient accuracy.
In contrast, our method primarily aims to enhance the interaction
efficiency of classic edit propagation methods without taking seman-
tic information into account, thereby making it more efficient and
user-friendly.

Our work builds on top of Wang et al. [15] to extract the color
palette of a given image. Unlike most existing approaches, we view
the palette as a hidden tool, providing a more intuitive interface that
allows users to recolor the input image by directly modifying the pixels.
Besides, our method is more efficient and requires less interaction than
existing approaches.

3. Background and motivation

Our method builds on convex hull-based image recoloring. Before
introducing our approach, we begin with some relevant background in
this section. It consists of two main aspects i.e., palette extraction and
mixing weights calculation.

Z.-X. Xia, J.-Y. Hao, K. Li et al. Computers & Graphics 119 (2024) 103875

m

𝐸

W
𝑆
a

p

𝑅

W
t

c
i

3

p
p
o

𝐼

H
𝐼

I
a
b
c
H
r
i
p
d

o

T
e
r
i

i
e
o
𝐿
i

𝑃

W
r
a

E
r
e
d
u

𝐿

C
a
s
p

3.1. Palette extraction

Palette extraction aims to abstract a small set of representative
colors from a given input image. Inspired by the traditional painting
process, Tan et al. [11] argue that the colors in an image often re-
sult from blending multiple colors in a palette. Following this idea,
they proposed the first convex hull-based approach for color editing.
Specifically, they first project the input image into 3D RGB space, then
compute the convex hull and simplify it. Finally, the vertices of the
simplified convex hull act as the color palette. However, the palette
colors (convex hull vertices) typically are far from the existing colors
in the image due to the nature of the convex hull, making the color
palette less representative. To address this problem, Wang et al. [15]
proposed an optimized algorithm to enhance the representativeness of
the color palette.

Given an input image 𝐼 , Wang et al. [15] aim to find a polyhedral
𝑃 = (𝑉 , 𝐹) (𝑉 and 𝐹 are sets of vertices and faces, respectively) to

inimize the following energy function

= 𝜃 ⋅ 𝑅(𝑃 , 𝐼) + 𝑆(𝑉 , 𝐼) (1)

hich combines the reconstruction loss 𝑅(⋅) and the representation loss
(⋅), weighted by a balance parameter 𝜃. We empirically set 𝜃 = 100 for
ll of our examples.

The reconstruction loss is measured by the average distance of all
ixels to the convex hull of 𝑉

(𝑃 , 𝐼) = 1
𝑁

∑

𝑖

‖

‖

𝐼𝑖 − Proj(𝐼𝑖)‖‖2 (2)

Where 𝑁 denotes the number of pixels in 𝐼 , Proj(𝐼𝑖) denotes the
projection of 𝐼𝑖 to the polyhedral 𝑃 . We let Proj(𝐼𝑖) = 𝐼𝑖 if 𝐼𝑖 is enclosed
in 𝑃 , because such pixel can be accurately reconstructed according to
the property of a convex hull.

The representativeness loss is measured by the average distance of
the palette colors 𝑉 to the centers of its neighbors  .

𝑆(𝑉 , 𝐼) = 1
|𝑉 |

∑

𝑖

‖

‖

𝑉𝑖 −𝑖
‖

‖

(3)

here 𝑖 is the center of 𝑉𝑖’s neighbors. 𝑉𝑖’s neighbors are defined as
he k nearest pixels to 𝑉𝑖 in RGB space.

In optimization, the polyhedral 𝐺 is initialized as the simplified
onvex hull calculated using Tan et al. [11]. The resulting color palette
s obtained by iteratively optimizing the energy function (Eq. (1)).

.2. Mixing weights calculation

After obtaining the color palette of an image, Wang et al. [15] em-
loy mean value coordinates (MVC) to calculate the mixing weights of
ixels. That is to say, any pixel 𝐼𝑖 is expressed as a convex combination
f the color palette 𝑃

𝑖 =
𝑀
∑

𝑗=1
𝑤𝑖𝑗𝑃𝑗 (4)

ere 𝑀 is the palette size, 𝑤𝑖𝑗 is referred to as the mixing weight of
𝑖 respect to 𝑃𝑗 , and it satisfies that ∑

𝑗 𝑤𝑖𝑗 = 1 and 0 ≤ 𝑤𝑖𝑗 ≤ 1. once
the color palette along with the mixing weights is obtained, user could
recolor the image by modifying the color palette, i.e. 𝐼 ′𝑖 =

∑𝑀
𝑗=1 𝑤𝑖𝑗𝑃 ′

𝑗 .
Motivation. The color palette is a powerful tool for color editing.

n convex hull-based approaches [11,13,15], pixels can be naturally
nd efficiently encoded as a convex combination of the color palette
y mixing weights calculation. Thanks to this expression, the user
ould recolor an image by modifying its corresponding color palette.
owever, it does not support direct editing of the input image. As a

esult, recoloring some objects or regions can be tedious, especially
f the colors of those objects or regions do not appear in the color
alette. In edit propagation, while it allows the user to make edits
irectly, and propagates them to the whole image, it is always time
3

and space consuming, or requires the user to provide intensive inter-
actions. Considering the advantages of palette-based approaches and
the disadvantages of edit propagation, we present a novel palette-based
approach for edit propagation. It enables the user to put edits to the
image directly, and then efficiently propagates user edits to the whole
image.

4. Method

Our goal is to propagate user edits to the whole image quickly. To
this end, we first follow Tan et al. [11] and Wang et al. [15] to extract
a color palette from the input image, and calculate the mixing weights
of each pixel with respect to the color palette. We then formulate
the propagation of user edits as an efficient optimization problem,
to achieve intuitive and real-time color editing. Since Section 3 has
detailed the palette extraction and mixing weights calculation, next,
we focus on the proposed edit propagation algorithm.

4.1. Formulation

Given an input image 𝐼 ∈ R𝑁×3 (where 𝑁 denotes the total number
f pixels in the image), an extracted color palette 𝑃 ∈ R𝑀×3 (where 𝑀

denotes the palette size), along with the corresponding mixing weights
𝑊 ∈ R𝑁×𝑀 . Let 𝐷 = {𝑑𝑖} be the indices of user modified pixels, 𝐶 =
{𝐶𝑑𝑖} and 𝐶 ′ = {𝐶 ′

𝑑𝑖
} are the original and modified pixels, respectively.

Our goal is to solve for the edited image 𝐼 ′ that satisfies user intention.
To this end, we formulate this task as an optimization problem: seeking
a palette 𝑃 ′ that is minimally changed from the original palette 𝑃 .

ypically, similar pixels have similar mixing weights, so that user local
dits can be efficiently and naturally propagated to similar pixels in the
est of the input image with 𝐼 ′ = 𝑊𝑃 ′. The pipeline of this method is
llustrated in Fig. 1.

To seek a suitable palette 𝑃 ′, we define a loss function to measure
ts quality. A well-designed loss function should take into account the
diting intention, locality and quality of the edited image. Therefore
ur loss function is defined as the weighted sum of an editing term
edit, a correlation term 𝐿corr and a sparsity term 𝐿sparse, and our goal

n searching for a palette 𝑃 ′ is formulated as:
′ = argmin

𝑃 ′
𝐿 and 𝐿 = 𝜆1𝐿edit + 𝜆2𝐿corr + 𝜆3𝐿sparse (5)

here 𝜆1, 𝜆2 and 𝜆3 are the balancing parameters that control the
elative contribution of these terms. We empirically set 𝜆1 = 8, 𝜆2 = 4
nd 𝜆3 = 1.

dit term. The edit term forces user-specific pixels to be accurately
ecolored to target colors with the modified color palette 𝑃 ′. We
numerate all user-specific pixels to measure the editing accuracy. It is
efined as the average 𝐿2 difference between the recolored and original
ser-specific pixels:

edit =
1
|𝐷|

∑

𝑖∈𝐷

‖

‖

𝑊𝑖𝑃
′ − 𝐶 ′

𝑖
‖

‖

2
2 (6)

Where 𝑊𝑖 ∈ R1×𝑀 denotes the mixing weights of any user-specific pixel
𝐶𝑖, and the recoloring result of 𝐶𝑖 is calculated by 𝑊𝑖𝑃 ′.

orrelation term. To meet user edit intention as much as possible, it is
lso essential to maintain the colors of pixels that are not similar to the
pecified ones. Its goal is to avoid unnecessary color change in the color
ropagation process. We calculate the pixel-wise 𝐿2 difference between

the recolored result and the input image to measure the correlation loss.
It is defined as:

𝐿corr =
1

∑𝑁
𝑖=1 𝜔𝑖

𝑁
∑

𝑖=1
𝜔𝑖

‖

‖

𝐼𝑖 −𝑊𝑖𝑃
′
‖

‖

2
2 (7)

Where 𝜔𝑖 is a weight parameter, its purpose is to keep the colors of
pixels that are not similar to user-specified pixels as unchanged as
possible. So that pixels are similar (dissimilar) to those user-specified

Z.-X. Xia, J.-Y. Hao, K. Li et al. Computers & Graphics 119 (2024) 103875

f

u

𝜔

S
f
c
c
t
p

𝐿

a
e
t


c
d
l

⎧

⎪

⎪

⎨

⎪

⎪

⎩

Fig. 1. Pipeline of our method. Our method takes the image 𝐼 , the extracted palette 𝑃 , and the user edits 𝐶 ′ as input, and then seeks a color palette 𝑃 ′ by minimizing an energy
unction to match the user editing intention, at last, outputs the edited image with 𝐼 ′ = 𝑊𝑃 ′. Image @Dani Jones.
W

d
t
t
c
m

v
o
w

5

9
o
W
e

w
a
s
I
e

p
m
p
t
t

5

o
c
a
t
o
t

pixels would receive smaller (larger) weights. So the weight 𝜔𝑖 of
any pixel 𝐼𝑖 is determined by the minimal distance between 𝐼𝑖 and
ser-specific pixels 𝐶, it is defined as:

𝑖 = exp(min
𝑗∈𝐷

‖

‖

‖

𝐼𝑖 − 𝐶𝑗
‖

‖

‖

2

2
) (8)

parsity term. Locality is an essential criterion in color editing. It
acilitates the user to achieve targeted editing without undesired global
olor changes. To this end, we seek a color palette 𝑃 ′ that has minimal
hange against the original palette 𝑃 according to user edits. That is
o say, we expect the variation between 𝑃 and 𝑃 ′ to be as sparse as
ossible. Specifically, the sparsity term is defined as:

sparse = 1
𝑀

𝑀
∑

𝑖=1

‖

‖

𝑃 ′
𝑖 − 𝑃𝑖

‖

‖1 (9)

4.2. Optimization

Directly solving the edit propagation problem in Eq. (5) is difficult.
Two primary issues need to be resolved. Firstly, we calculate the
correlation term (Eq. (7)) over all pixels in the input image, which
is fairly time-consuming even for moderate-sized input images, and
cannot achieve real-time feedback. Secondly, for better locality, we for-
mulate the sparsity term as 𝐿1 difference between changed palette 𝑃 ′

nd original palette 𝑃 . Therefore, the loss function is not differentiable
verywhere; it is hard to obtain stable optimal solutions, and it is easy
o fall into local optima.

To improve computational efficiency, we evenly sample  (we set
= 256 in default) pixels in the input image for correlation term

alculation. To achieve stable palette 𝑃 ′, we try to remove the 𝐿1
ifference from the sparsity term (Eq. (9)) and convert it into a common
inear term. Specifically, let

𝑋𝑖,𝑗 =

‖

‖

‖

𝑃 ′
𝑖,𝑗 − 𝑃𝑖,𝑗

‖

‖

‖1
+
(

𝑃 ′
𝑖,𝑗 − 𝑃𝑖,𝑗

)

2

𝑌𝑖,𝑗 =

‖

‖

‖

𝑃 ′
𝑖,𝑗 − 𝑃𝑖,𝑗

‖

‖

‖1
−
(

𝑃 ′
𝑖,𝑗 − 𝑃𝑖,𝑗

)

2

(10)

Where 𝑗 ∈ {1, 2, 3} is used to traverse all three RGB channels of 𝑃𝑖
and 𝑃 ′

𝑖 (1: Red, 2: Green, 3: Blue). Let 𝑋𝑖 = (𝑋𝑖,1, 𝑋𝑖,2, 𝑋𝑖,3), 𝑌𝑖 =
(𝑌𝑖,1, 𝑌𝑖,2, 𝑌𝑖,3), then 𝑃 ′

𝑖 = 𝑋𝑖 − 𝑌𝑖 + 𝑃𝑖 and ‖𝑃 ′
𝑖 − 𝑃𝑖‖1 =

∑3
𝑗=1 𝑋𝑖,𝑗 + 𝑌𝑖𝑗 .

We then substitute which into Eqs. (6), (7) and (9). As a result, these
three terms can be rewritten as:
⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

𝐿′
edit =

1
|𝐷|

∑

𝑖∈𝐷

‖

‖

𝑊𝑖(𝑋 + 𝑌 + 𝑃) − 𝐶 ′
𝑖
‖

‖

2
2

𝐿′
corr =

1
∑𝑁

𝑖=1 𝜔𝑖

𝑁
∑

𝑖=1
𝜔𝑖

‖

‖

𝐼𝑖 −𝑊𝑖(𝑋 + 𝑌 + 𝑃)‖
‖

2
2

𝐿′
sparse = 1

𝑀

𝑀
∑

3
∑

𝑋𝑖,𝑗 + 𝑌𝑖,𝑗

(11)
⎩
𝑖=1 𝑗=1 c

4

here (𝑋 −𝑌 +𝑃) ∈ R𝑀×3, its 𝑖th column is 𝑋𝑖 −𝑌𝑖 +𝑃𝑖. So Eq. (5) can
be further rewritten as:

𝑋, 𝑌 = argmin
𝑋,𝑌

𝐿′ and 𝐿′ = 𝜆1𝐿
′
edit + 𝜆2𝐿

′
corr + 𝜆3𝐿

′
sparse (12)

We employ a high-performance quadratic programming solver, Gurobi
[30], to solve for 𝑋 and 𝑌 . We then obtain the resulting edited palette
𝑃 ′ with 𝑃 ′ = 𝑋 − 𝑌 + 𝑃 .

The time complexity of the optimization process using Gurobi is
approximate  (|𝑃 |(|𝑆| + |𝐷|)𝑛). Here, |𝑃 | denotes the palette size, |𝑆|
enotes the number of sampling pixels for calculating the correlation
erm, |𝐷| denotes the total number of user-selected pixels (which is
ypically small), and 𝑛 represents the number of iterations required for
onvergence. Typically, it can be converged in around 10 iterations and
eets the real-time requirements.

After obtaining the changed palette 𝑃 ′, we then propagate the color
ariations in 𝑃 ′ to the whole image with 𝐼 ′ = 𝑊𝑃 ′. Generally speaking,
ur method is highly efficient and could meet user editing intentions
ithout introducing undesirable global color changes in color editing.

. Experiments

We perform all experiments on a desktop computer with an Intel i9-
900K 3.6 GHz CPU and 8 GB RAM, running Ubuntu 22.04 LTS as the
perating system. Our algorithm is implemented in C++17 standard.
e employ the source codes provided by Tan et al. [13] and Wang

t al. [15] to generate the color palettes of input images.
We also developed a tool for edit propagation. As shown in Fig. 3,

e place a color editing interface on the left, and display the input
nd edited images on the right. Our tool enables users to conveniently
elect pixels and pick colors via color wheel, RGB space, HSV space, etc.
t is easy to use, supports quick feedback, and allows users to observe
diting results instantly.

In this section, we first compare our approach with state-of-the-art
alette-based, edit propagation -based and pixel-level image recoloring
ethods, to demonstrate the effectiveness of our approach. Then, we
rovide an ablation study to evaluate the effectiveness of three loss
erms in the energy function (Eq. (5)). At last, we perform a user study
o evaluate our method objectively.

.1. Parameter evaluation

In Fig. 2, we evaluate the impact of the correlation term (Eq. (7))
n recoloring. We sample 16, 64, 256 and 1024 pixels to calculate the
orrelation term, respectively. The recoloring results along with the
verage processing time are presented in column 2, 3, 4 and 5, respec-
ively. Generally, a small number of samplers struggles to keep the color
f unrelated parts unchanged, and a larger number of samplers leads
o better locality in recoloring. In the Beach example, the user wants to

hange the colors of the sky and the sea from blue to yellow. The cloud

Z.-X. Xia, J.-Y. Hao, K. Li et al. Computers & Graphics 119 (2024) 103875

t
t
e
b
o
w

5

l
F
p
t
a
t
d
t

r
i

Fig. 2. Recoloring results generated by calculating the correlation term with varying numbers of pixels. In this experiment, we sample 16, 64, 256 and 1024 pixels for the
correlation term calculation, respectively. From the results, we observe that  = 256 provides better balance between computational efficiency and locality control.
Fig. 3. Our GUI for color editing. The left side presents the editing tools, including import and export of images and color palettes, color selection and adjustment features. On
the right side, a side-by-side comparison of the image before and after editing is displayed, allowing users to easily monitor changes.
i
t
I
r
s
O
c
i
i

r
i
l
r
c

5

w
W
e

is changed to unnatural cyan when  = 16, the hill on the left is alerted
o undesirable blue when  = 64, and it produces a comparable result
hat faithful user edit intention when  = 254 or 1024. In the Blossom
xample, when  = 16 or 64, it produces unpleasant brightness and
lack inside the flower, while larger  generate more natural results. In
rder to balance both computational efficiency and recoloring effects,
e set  = 254 for all examples.

.2. Ablation study

We conducted an ablation study to evaluate the effectiveness of the
oss terms in our energy function (Eq. (5)). We give two examples in
ig. 4 to assess the effectiveness of the terms. For each sample, we
rovide the input and edits, the results generated when the correlation
erm or the sparsity term are removed, and the results generated with
ll loss terms. Note that the edit term cannot be removed. Otherwise,
he input images will remain unchanged, as user interaction will be
isabled in this case. Besides, we also show the extracted palettes and
he palettes solved with our optimization method below the images.

In the Leaf example, the user intends to transform green leaves into
ed leaves. It is evident that removing the correlation term would result
n an unexpected light green sky, which contradicts the user’s editing
5

ntention. Similarly, eliminating the sparsity term alters five colors in
he palette, causing the flowers to turn an unexpected shade of green.
n the Sunset example, the user’s goal is to change the golden light to
ed light. Excluding the correlation term leads to an undesirable color
hift in the lake, and the flowers and plants exhibit an overly red hue.
mitting the sparsity term, on the other hand, results in a change to five
olors and turns the sky green. In contrast, the outcomes generated by
ncorporating all loss terms align more closely with the user’s editing
ntent.

In summary, the correlation and sparsity terms could avoid a wide
ange of color variations, and effectively preserve the colors of non-
nterested regions or objects. By incorporating the edit term, the corre-
ation term, and the sparsity them, our approach achieves promising
esults that conform well to the user editing goal and preserve the
olors of parts not concerned.

.3. Comparisons

In this part, we qualitatively and quantitatively compare our method
ith state-of-the-art palette-based and edit propagation approaches.
e provide 8 examples in Figs. 5, 6 and 7 for comparison. For each

xample, we provide the input image, the editing intention (under

Z.-X. Xia, J.-Y. Hao, K. Li et al. Computers & Graphics 119 (2024) 103875

Fig. 4. Ablation study. In this figure, we provide two examples to evaluate the effectiveness of different terms in our loss function (Eq. (5)). We provide the inputs and edits
(column 1), the results generated by removing the correlation term (column 2) and the sparsity term (column 3), and the results generated by using the full loss function (column
4). It suffers from global color change and unfaithful results when these two terms are disabled.

Fig. 5. Visual comparison with palette-based approaches. In this figure, we compare our method with two palette-based approaches i.e., Chang et al. [10] and Wang et al. [15].
For each example, we provide the input image along with the edit intention (column 1), recoloring results generated by different methods (column 2–4) and the ground truth
images (column 5). Generally, existing methods tend to produce undesirable global color change, while our results are more faithful to user edit intentions.

6

Z.-X. Xia, J.-Y. Hao, K. Li et al. Computers & Graphics 119 (2024) 103875

p
t

t
q
a
i
m
P
t
a
p
a
p

5

m
m

Fig. 6. Visual comparison with edit propagation-based approach. In this figure, we compare our approach with Li et al. [7]’s edit propagation method. For each example, we
rovide the input image along with the edit intention (column 1), results generated by different methods (column 2–3) and the ground truth image (column 4). Compared with
he existing method, our approach needs fewer user interactions and achieves better local control in recoloring.
he input), and edited results generated by different methods. For
ualitative comparison, We focus on the quality of the generated image
nd how well it matches the edit intent. For quantitative comparison,
n order to fairly evaluate different methods, we invited experts to
anually edit the images using specialized software such as Adobe
hotoshop, to obtain ground-truth (GT) reference. We then calculate
he Mean Square Error (MSE), Peak Signal-to-Noise Ratio (PSNR),
nd Structural Similarity Index Measure (SSIM) between the results
roduced by each method and the ground truth as an objective evalu-
tion metric. All quantitative comparison results of these examples are
rovided in Table 1.

.3.1. Comparisons with palette-based methods
We first compare our method with two state-of-the-art palette-based

ethods: Chang et al. [10] and Wang et al. [15]. The former employs
odified k-means clustering to extract the color palette, and uses Radial
7

Basis Function (RBF) interpolation to transfer the color change of the
palette to the whole image. The latter calculates the convex hull of
colors in the input image and use its vertices as the color palette,
and then leverages Mean value Coordinates (MVC) to achieve real-time
color editing. Both methods allow the user to adjust the appearance of
an image by modifying the extracted palette. While powerful, it does
not support direct pixel-level editing and always produces undesirable
global color changes in color editing. In contrast, our approach supports
direct editing of images, producing results that better fulfill user editing
intent.

In Fig. 5, we provide four examples to compare our method with
Chang et al. [10] and Wang et al. [15]. For each method, we present
the color palettes before and after editing under the edited image. Note
that our approach does not manipulate the color palette directly. In the
fourth column, we just show the original palette and the palette solved
by our optimization method. In our method, the selected pixels and

Z.-X. Xia, J.-Y. Hao, K. Li et al. Computers & Graphics 119 (2024) 103875
Fig. 7. Visual comparison with Chao et al. [26]’s pixel-level image editing method. For each example, we provide the input along with the user editing intend (column 1), the
recoloring result and edits on image space (column 2) and curve (column 3) of Chao et al. [26], our result (column 4), and the GT (column 5). In all examples, the results
generated by our method better match user intends.
Table 1
Quantitative comparison with existing methods.

Example MSE↓ PSNR(dB)↑ SSIM↑

Comparison with
palette-based
methods

[10] [15] Ours [10] [15] Ours [10] [15] Ours

Bird 0.0055 0.0010 0.0002 22.59 29.83 36.37 0.9489 0.9682 0.9873
Orange 0.0078 0.0026 0.0007 21.09 25.84 31.36 0.9333 0.9703 0.9783
Lady 0.0032 0.0013 0.0007 24.89 28.76 31.78 0.9569 0.9744 0.9828
Tree 0.0022 0.0013 0.0010 26.52 28.85 29.67 0.9288 0.9536 0.9546

Comparison with
edit propagation
method

[7] Ours [7] Ours [7] Ours

Blackthorn 0.0118 0.0020 19.26 26.80 0.8029 0.9410
Bottle 0.0035 0.0004 24.46 33.25 0.9468 0.9848
Flower 0.0072 0.0026 21.45 25.77 0.8353 0.9254
Shoal 0.0139 0.0002 18.57 36.80 0.9635 0.9968

Comparison with
pixel-level image
editing method

[26] Ours [26] Ours [26] Ours

Automobile 0.0116 0.0079 19.34 21.04 0.7767 0.8673
Fly 0.0035 0.0021 24.51 26.86 0.9214 0.9652
Rose 0.0083 0.0044 20.83 23.55 0.8676 0.9401
Fish 0.0144 0.0086 18.40 20.64 0.6999 0.8045
colors before and after changes are given in the edited images. Besides,
the ground truths edited by experts are displayed in the last column.

In the Bird example, the user expects to change the green branch
in the bird’s beak to a dead branch to create a feeling of depression.
Existing methods produce unexpected color changes in feathers, mak-
ing their colors turn red. Besides, Chang et al. [10] darken the image’s
overall brightness. In the Orange example, oranges on both sides have
similar colors. The user intends to make the red orange on the right
into a purple orange. Existing methods struggle to distinguish these
8

two similarly colored oranges and edit them separately. As we can
see, the color of the orange on the left is changed inevitably. In the
Lady example, the user has to modify multiple colors to change the
purple background to light blue, as shown in the reference. In the
Tree example, the user wants to adjust the flowers from red to purple.
Existing methods produce unexpected color changes on the branches.

In summary, existing palette-based methods tend to produce global
changes in appearance. This is because the color palettes generated
by existing methods usually contain fewer colors. While it is easy

Z.-X. Xia, J.-Y. Hao, K. Li et al. Computers & Graphics 119 (2024) 103875
to manipulate, the mixing weights are not sparse enough to produce
global color variations. In contrast, Our approach supports palettes
that contain more colors because we do not operate directly on the
palette. The color palette just assists us with efficient color propagation.
Compared to the state-of-the-art palette-based methods, the results
generated by our method better fulfill user intent.

5.3.2. Comparisons with edit propagation
In this part, we compare our method with the edit propagation

approach. Since some recent works such as [9,20] did not release their
source code, we only compare our method with a similar real-time edit
propagation method proposed by Li et al. [7]. They formulate the edit
propagation as an efficient interpolation problem. They first define a set
of Radial Basis Functions (RBFs) on stroked pixels, and then the edited
color of each pixel is expressed as a linear combination of these RBFs.
While it significantly accelerates previous methods, it needs density
interactions.

In Fig. 6, we also provide four examples to compare our method
with Li et al. [7]. For each sample, we give the input (1st column), user
editing intention (under the input), results generated by Li et al. [7]
(2nd column), and our method (3rd column), and the reference images
edited by experts (4th column). In Li et al.’s results, there are two
types of user strokes: white strokes indicate color modification, while
black strokes indicate that the color stays the same. After putting these
strokes, it then automatically propagates to the whole image.

In the Blackthorn example, the user wants to change its color to red.
As can be seen in Li et al. [7]’s result, the fruits and leaves in the upper
right corner look noticeably darker than the input colors. In contrast,
our results are more natural, and only need to modify one pixel on
the fruit to generate a desirable result. In the Bottle example, the user
intends to make the yellow plants to green plants. For li et al. [7]’s
method, while we put stroke to retain the color of the flower on the
ground, their method still fails to preserve the stamen’s color. In the
Flower example, the results generated by Li et al. [7] and our method
are similar, but their approach needs much more user interaction. In
the Shoal example, the user attempts to change the color of the scarf
to blue. The existing method fails to keep the colors of the sky and the
lady’s jeans. In contrast, our method effectively achieves the editing
goal with minimal impact on the rest of the image.

In general, the edit propagation-based approach relies entirely on
user strokes, often leading to unexpected global color changes in color
editing. It usually requires users to put fine-tuned and density strokes
to achieve good results, which burdens novice or inexperienced users.
Our approach typically only requires the user to modify a handful of
pixels and well maintain the color of non-interested regions.

5.3.3. Comparisons with pixel-level image editing method
In Fig. 7, we compare our method against Chao et al. [26], a

recent pixel-level recoloring approach. Although their method allows
for easy adjustment of image brightness, it often struggles to produce
smooth recoloring results for complex scenes, producing some unex-
pected artifacts. This is due to two main issues: first, their method does
not adequately consider preserving the colors of uninterested regions;
second, their energy function is overly complex, making it difficult to
converge to an acceptable result in a short time. In contrast, our method
better preserves the color of the uninterested region in a simpler form,
resulting in improved recoloring results and faster convergence.

In the Car example, the user expects to modify the color of the
car from red to blue, Chao et al. [26] method produces unexpected
red color on the car, while our result is more reasonable without any
artifact. Similarly, in the Fly example, the user wants to change the
color of the flowers from pink to light blue, under the same user edits,
Chao et al. [26]’s result exhibits obvious artifacts, while our method
produces smoother and more harmonious recoloring results. In the Rose
example, the user aims to adjust the colors of two different flowers
in the foreground and background. Chao et al. [26]’s method tends to
9

Fig. 8. Failure case. Our method cannot distinguish different objects with the same
color and perform separate color editing to these objects. In this example, We try to
change the yellow egg to green, but the color of the background is also altered to
green.

introduce unexpected blue at the center of the flower. In contrast, our
method effectively captures the user’s intention without such issues.
In the Fish example, Chao et al. [26]’s method creates unnatural color
transitions at the edges of the fish, whereas our method achieves
smoother color transitions.

At the end of the comparison subsection, we would like to clarify
two things. Firstly, the palette size of different methods are auto-
matically determined. Secondly, readers may notice that our palettes
contain more colors than existing methods in many examples. With
regard to the second fact, we have two considerations. On the one
hand, our method does not directly use the palette for color editing,
instead, the palette serves as a hidden tool, therefore, a larger palette
size does not impose an additional burden to users in color editing.
On the other hand, a palette with more colors usually ensures better
local control in recoloring. However, existing palette-based methods
typically require the user to edit the palette, thus limiting the palette to
contain fewer colors. Theoretically, Wang at al [15]’s method is capable
of achieving comparable color editing results when utilizing the same
color palette as our method. Nevertheless, it consumes considerable
time to select and adjust colors accordingly, whereas our approach
demonstrates greater efficiency by operating directly on the image.

We provide more recoloring results in Fig. 9 to further demonstrate
the effectiveness of our method.

5.4. User study

To further illustrate the effectiveness of our method, we conducted a
user study. We invited 61 participants to evaluate the results generated
by existing methods and ours. Specifically, our experiments included
three aspects:

• Results evaluation 1. We showed each participant with 5 exam-
ples. For each example, we provided the input, the edit intention,
and the results generated by Li et al. [7], Chang et al. [10], Wang
et al. [15] and ours, then we asked participants to choose the
result that best matched the edit intention.

• Results evaluation 2. Based on Results evaluation 1, for each
example, we also provided the result generated by the artist based
on the editing intent as a reference. And then, we asked the
participant to choose the results closest to the reference.

• Ease of use evaluation. We asked participants to edit the images
using different methods and to evaluate their convenience.

The results of the user study are generally in line with our expec-
tations. For ‘‘Results evaluation 1’’, our results received more votes in
all examples. On average, 66% agree that our results better match the
given edit intentions. While 7% prefer Li et al. [7], 17% choose Chang
et al. [10] and 10% for Wang et al. [15]. For ‘‘Results evaluation 2’’,
on average, 56% believe that our results are closer to the references. In
addition, results generated by Chang et al. [10] receive the most votes
with 25%. For ‘‘Ease of use evaluation’’, over 60% of the participants
find our editing interface more intuitive and easy to use.

Z.-X. Xia, J.-Y. Hao, K. Li et al. Computers & Graphics 119 (2024) 103875
Fig. 9. Gallery. Diversity recoloring results produced by our method. For each pair of images, the left one is the input along with the user edits, the right one is the recoloring
result.
6. Conclusion

Inspired by the advance of palette-based methods, in this paper, we
introduce color palette into edit propagation, to achieve efficient yet
easy-to-use color editing. We further formulate the edit propagation
task as an efficient palette optimization problem. It allows the user to
directly modify pixels to adjust the color of the input image. And users
can get real-time feedback in color editing. Extensive experiments and
a user study have demonstrated the effectiveness of our method.

Our method has a primary limitation. Our method works in RGB
color space, so only color similarity is considered in edit propagation.
Our approach struggles to achieve the desired results for some chal-
lenging application scenarios. As shown in Fig. 8, if an image contains
a yellow egg and a yellow background, it would be difficult for user to
recolor them to different colors using our method without introducing
semantic information. In the future, we would like to extend the
current approach from RGB space to high-dimensional semantic space,
to achieve more challenging color editing tasks.

CRediT authorship contribution statement

Zi-Xun Xia: Writing – original draft, Validation, Software, Method-
ology. Jian-Yu Hao: Software, Resources. Kang Li: Visualization, Vali-
dation. Ao-Xiang Tian: Investigation. Zheng-Jun Du: Writing – review
& editing, Supervision, Methodology.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

Data will be made available on request.
10
Acknowledgments

We appreciate the anonymous reviewers for their valuable com-
ments and suggestions. This work is supported by the Youth Program of
the Natural Science Foundation of Qinghai Province (Project Number:
2023-ZJ-951Q).

References

[1] Levin A, Lischinski D, Weiss Y. Colorization using optimization. In: ACM
SIGGRAPH 2004 papers. 2004, p. 689–94.

[2] Pellacini F, Lawrence J. AppWand: Editing measured materials using
appearance-driven optimization. In: ACM SIGGRAPH 2007. 2007, p. 54–es.

[3] An X, Pellacini F. Appprop: all-pairs appearance-space edit propagation. In: ACM
SIGGRAPH 2008 papers. 2008, p. 1–9.

[4] Xu K, Wang J, Tong X, Hu S-M, Guo B. Edit propagation on bidirectional texture
functions. In: Computer graphics forum, vol. 28, no. 7. Wiley Online Library;
2009, p. 1871–7.

[5] Xu K, Li Y, Ju T, Hu SM, Liu TQ. Efficient affinity-based edit propagation using
kd tree. ACM Trans Graph 2009;28(5):1–6.

[6] Chen X, Zou D, Zhao Q, Tan P. Manifold preserving edit propagation. ACM Trans
Graph 2012;31(6):1–7.

[7] Li Y, Ju T, Hu S-M. Instant propagation of sparse edits on images and videos.
In: Computer graphics forum, vol. 29, no. 7. Wiley Online Library; 2010, p.
2049–54.

[8] Chen X, Zou D, Li J, Cao X, Zhao Q, Zhang H. Sparse dictionary learning for edit
propagation of high-resolution images. In: Proceedings of the IEEE conference on
computer vision and pattern recognition. 2014, p. 2854–61.

[9] Li F, Ou C, Gui Y, Xiang L. Instant edit propagation on images based on bilateral
grid. Comput Mater Continua 2019;61(2).

[10] Chang H, Fried O, Liu Y, DiVerdi S, Finkelstein A. Palette-based photo recoloring.
ACM Trans Graph 2015;34(4):1–11.

[11] Tan J, Lien JM, Gingold Y. Decomposing images into layers via RGB-space
geometry. ACM Trans Graph 2016;36(1):1–14.

[12] Aksoy Y, Aydin TO, Smolić A, Pollefeys M. Unmixing-based soft color
segmentation for image manipulation. ACM Trans Graph 2017;36(2):1–19.

[13] Tan J, Echevarria J, Gingold Y. Efficient palette-based decomposition
and recoloring of images via RGBXY-space geometry. ACM Trans Graph
2018;37(6):1–10.

http://refhub.elsevier.com/S0097-8493(24)00002-5/sb1
http://refhub.elsevier.com/S0097-8493(24)00002-5/sb1
http://refhub.elsevier.com/S0097-8493(24)00002-5/sb1
http://refhub.elsevier.com/S0097-8493(24)00002-5/sb2
http://refhub.elsevier.com/S0097-8493(24)00002-5/sb2
http://refhub.elsevier.com/S0097-8493(24)00002-5/sb2
http://refhub.elsevier.com/S0097-8493(24)00002-5/sb3
http://refhub.elsevier.com/S0097-8493(24)00002-5/sb3
http://refhub.elsevier.com/S0097-8493(24)00002-5/sb3
http://refhub.elsevier.com/S0097-8493(24)00002-5/sb4
http://refhub.elsevier.com/S0097-8493(24)00002-5/sb4
http://refhub.elsevier.com/S0097-8493(24)00002-5/sb4
http://refhub.elsevier.com/S0097-8493(24)00002-5/sb4
http://refhub.elsevier.com/S0097-8493(24)00002-5/sb4
http://refhub.elsevier.com/S0097-8493(24)00002-5/sb5
http://refhub.elsevier.com/S0097-8493(24)00002-5/sb5
http://refhub.elsevier.com/S0097-8493(24)00002-5/sb5
http://refhub.elsevier.com/S0097-8493(24)00002-5/sb6
http://refhub.elsevier.com/S0097-8493(24)00002-5/sb6
http://refhub.elsevier.com/S0097-8493(24)00002-5/sb6
http://refhub.elsevier.com/S0097-8493(24)00002-5/sb7
http://refhub.elsevier.com/S0097-8493(24)00002-5/sb7
http://refhub.elsevier.com/S0097-8493(24)00002-5/sb7
http://refhub.elsevier.com/S0097-8493(24)00002-5/sb7
http://refhub.elsevier.com/S0097-8493(24)00002-5/sb7
http://refhub.elsevier.com/S0097-8493(24)00002-5/sb8
http://refhub.elsevier.com/S0097-8493(24)00002-5/sb8
http://refhub.elsevier.com/S0097-8493(24)00002-5/sb8
http://refhub.elsevier.com/S0097-8493(24)00002-5/sb8
http://refhub.elsevier.com/S0097-8493(24)00002-5/sb8
http://refhub.elsevier.com/S0097-8493(24)00002-5/sb9
http://refhub.elsevier.com/S0097-8493(24)00002-5/sb9
http://refhub.elsevier.com/S0097-8493(24)00002-5/sb9
http://refhub.elsevier.com/S0097-8493(24)00002-5/sb10
http://refhub.elsevier.com/S0097-8493(24)00002-5/sb10
http://refhub.elsevier.com/S0097-8493(24)00002-5/sb10
http://refhub.elsevier.com/S0097-8493(24)00002-5/sb11
http://refhub.elsevier.com/S0097-8493(24)00002-5/sb11
http://refhub.elsevier.com/S0097-8493(24)00002-5/sb11
http://refhub.elsevier.com/S0097-8493(24)00002-5/sb12
http://refhub.elsevier.com/S0097-8493(24)00002-5/sb12
http://refhub.elsevier.com/S0097-8493(24)00002-5/sb12
http://refhub.elsevier.com/S0097-8493(24)00002-5/sb13
http://refhub.elsevier.com/S0097-8493(24)00002-5/sb13
http://refhub.elsevier.com/S0097-8493(24)00002-5/sb13
http://refhub.elsevier.com/S0097-8493(24)00002-5/sb13
http://refhub.elsevier.com/S0097-8493(24)00002-5/sb13

Z.-X. Xia, J.-Y. Hao, K. Li et al. Computers & Graphics 119 (2024) 103875
[14] Tan J, Echevarria J, Gingold Y. Palette-based image decomposition, harmoniza-
tion, and color transfer. 2018, arXiv preprint arXiv:1804.01225.

[15] Wang Y, Liu Y, Xu K. An improved geometric approach for palette-based image
decomposition and recoloring. In: Computer graphics forum, vol. 38, no. 7. Wiley
Online Library; 2019, p. 11–22.

[16] Lischinski D, Farbman Z, Uyttendaele M, Szeliski R. Interactive local adjustment
of tonal values. ACM Trans Graph 2006;25(3):646–53.

[17] Bie X, Huang H, Wang W. Real time edit propagation by efficient sampling. In:
Computer graphics forum, vol. 30, no. 7. Wiley Online Library; 2011, p. 2041–8.

[18] Xiao C, Yongwei N, et al. Efficient edit propagation using hierarchical data
structure. IEEE Trans Vis Comput Graph 2010;17(8):1135–47.

[19] Endo Y, Iizuka S, Kanamori Y, Mitani J. Deepprop: Extracting deep features from
a single image for edit propagation. In: Computer graphics forum, vol. 35, no.
2. Wiley Online Library; 2016, p. 189–201.

[20] Gui Y, Zeng G. Joint learning of visual and spatial features for edit propagation
from a single image. Vis Comput 2020;36(3):469–82.

[21] Zhu JY, Park T, Isola P, Efros AA. Unpaired image-to-image translation using
cycle-consistent adversarial networks. In: Proceedings of the IEEE international
conference on computer vision. 2017, p. 2223–32.

[22] Ju T, Schaefer S, Warren J. Mean value coordinates for closed triangular meshes.
In: ACM Siggraph 2005 papers. 2005, p. 561–6.
11
[23] Sun Q, Nie Y, Zhang Q, Li G. Building coarse to fine convex hulls with auxiliary
vertices for palette-based image recoloring. IEEE Trans Vis Comput Graphics
2023.

[24] Du ZJ, Lei KX, Xu K, Tan J, Gingold Y. Video recoloring via spatial-temporal
geometric palettes. ACM Trans Graph 2021;40(4):1–16.

[25] Zhang Q, Nie Y, Zhu L, Xiao C, Zheng WS. A blind color separation model for
faithful palette-based image recoloring. IEEE Trans Multimed 2021;24:1545–57.

[26] Chao CKT, Klein J, Tan J, Echevarria J, Gingold Y. ColorfulCurves: Palette-aware
lightness control and color editing via sparse optimization. ACM Trans Graph
2023;42(4). http://dx.doi.org/10.1145/3592405.

[27] Cho J, Yun S, Mu Lee K, Young Choi J. Palettenet: Image recolorization with
given color palette. In: Proceedings of the IEEE conference on computer vision
and pattern recognition workshops. 2017, p. 62–70.

[28] Akimoto N, Zhu H, Jin Y, Aoki Y. Fast soft color segmentation. In: Proceedings
of the IEEE/CVF conference on computer vision and pattern recognition. 2020,
p. 8277–86.

[29] Chao CKT, Klein J, Tan J, Echevarria J, Gingold Y. LoCoPalettes: Local control
for palette-based image editing. Comput Graph Forum (CGF) 2023;42(4). http:
//dx.doi.org/10.1111/cgf.14892, Special issue for Eurographics Symposium on
Rendering (EGSR).

[30] Gurobi Optimization, LLC. Gurobi optimizer reference manual. 2023, URL: https:
//www.gurobi.com.

http://arxiv.org/abs/1804.01225
http://refhub.elsevier.com/S0097-8493(24)00002-5/sb15
http://refhub.elsevier.com/S0097-8493(24)00002-5/sb15
http://refhub.elsevier.com/S0097-8493(24)00002-5/sb15
http://refhub.elsevier.com/S0097-8493(24)00002-5/sb15
http://refhub.elsevier.com/S0097-8493(24)00002-5/sb15
http://refhub.elsevier.com/S0097-8493(24)00002-5/sb16
http://refhub.elsevier.com/S0097-8493(24)00002-5/sb16
http://refhub.elsevier.com/S0097-8493(24)00002-5/sb16
http://refhub.elsevier.com/S0097-8493(24)00002-5/sb17
http://refhub.elsevier.com/S0097-8493(24)00002-5/sb17
http://refhub.elsevier.com/S0097-8493(24)00002-5/sb17
http://refhub.elsevier.com/S0097-8493(24)00002-5/sb18
http://refhub.elsevier.com/S0097-8493(24)00002-5/sb18
http://refhub.elsevier.com/S0097-8493(24)00002-5/sb18
http://refhub.elsevier.com/S0097-8493(24)00002-5/sb19
http://refhub.elsevier.com/S0097-8493(24)00002-5/sb19
http://refhub.elsevier.com/S0097-8493(24)00002-5/sb19
http://refhub.elsevier.com/S0097-8493(24)00002-5/sb19
http://refhub.elsevier.com/S0097-8493(24)00002-5/sb19
http://refhub.elsevier.com/S0097-8493(24)00002-5/sb20
http://refhub.elsevier.com/S0097-8493(24)00002-5/sb20
http://refhub.elsevier.com/S0097-8493(24)00002-5/sb20
http://refhub.elsevier.com/S0097-8493(24)00002-5/sb21
http://refhub.elsevier.com/S0097-8493(24)00002-5/sb21
http://refhub.elsevier.com/S0097-8493(24)00002-5/sb21
http://refhub.elsevier.com/S0097-8493(24)00002-5/sb21
http://refhub.elsevier.com/S0097-8493(24)00002-5/sb21
http://refhub.elsevier.com/S0097-8493(24)00002-5/sb22
http://refhub.elsevier.com/S0097-8493(24)00002-5/sb22
http://refhub.elsevier.com/S0097-8493(24)00002-5/sb22
http://refhub.elsevier.com/S0097-8493(24)00002-5/sb23
http://refhub.elsevier.com/S0097-8493(24)00002-5/sb23
http://refhub.elsevier.com/S0097-8493(24)00002-5/sb23
http://refhub.elsevier.com/S0097-8493(24)00002-5/sb23
http://refhub.elsevier.com/S0097-8493(24)00002-5/sb23
http://refhub.elsevier.com/S0097-8493(24)00002-5/sb24
http://refhub.elsevier.com/S0097-8493(24)00002-5/sb24
http://refhub.elsevier.com/S0097-8493(24)00002-5/sb24
http://refhub.elsevier.com/S0097-8493(24)00002-5/sb25
http://refhub.elsevier.com/S0097-8493(24)00002-5/sb25
http://refhub.elsevier.com/S0097-8493(24)00002-5/sb25
http://dx.doi.org/10.1145/3592405
http://refhub.elsevier.com/S0097-8493(24)00002-5/sb27
http://refhub.elsevier.com/S0097-8493(24)00002-5/sb27
http://refhub.elsevier.com/S0097-8493(24)00002-5/sb27
http://refhub.elsevier.com/S0097-8493(24)00002-5/sb27
http://refhub.elsevier.com/S0097-8493(24)00002-5/sb27
http://refhub.elsevier.com/S0097-8493(24)00002-5/sb28
http://refhub.elsevier.com/S0097-8493(24)00002-5/sb28
http://refhub.elsevier.com/S0097-8493(24)00002-5/sb28
http://refhub.elsevier.com/S0097-8493(24)00002-5/sb28
http://refhub.elsevier.com/S0097-8493(24)00002-5/sb28
http://dx.doi.org/10.1111/cgf.14892
http://dx.doi.org/10.1111/cgf.14892
http://dx.doi.org/10.1111/cgf.14892
https://www.gurobi.com
https://www.gurobi.com
https://www.gurobi.com

	Edit propagation via color palettes
	Introduction
	Related Works
	Edit propagation
	Palette-based image recoloring

	Background and motivation
	Palette extraction
	Mixing weights calculation

	Method
	Formulation
	Optimization

	Experiments
	Parameter evaluation
	Ablation Study
	Comparisons
	Comparisons with palette-based methods
	Comparisons with edit propagation
	Comparisons with pixel-level image editing method

	User Study

	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgments
	References

