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Abstract—Accurate camera pose estimation is essential and challenging for real world dynamic 3D reconstruction and augmented

reality applications. In this article, we present a novel RGB-D SLAMapproach for accurate camera pose tracking in dynamic

environments. Previousmethods detect dynamic components only across a short time-span of consecutive frames. Instead, we provide

amore accurate dynamic 3D landmark detectionmethod, followed by the use of long-term consistency via conditional random fields,

which leverages long-term observations frommultiple frames. Specifically, we first introduce an efficient initial camera pose estimation

method based on distinguishing dynamic from static points using graph-cut RANSAC. These static/dynamic labels are used as priors for

the unary potential in the conditional random fields, which further improves the accuracy of dynamic 3D landmark detection. Evaluation

using the TUMand BonnRGB-D dynamic datasets shows that our approach significantly outperforms state-of-the-art methods,

providingmuchmore accurate camera trajectory estimation in a variety of highly dynamic environments.We also show that dynamic 3D

reconstruction can benefit from the camera poses estimated by our RGB-DSLAMapproach.

Index Terms—RGB-D SLAM, dynamic SLAM, long-term consistency, conditional random fields,graph-cut RANSAC

Ç

1 INTRODUCTION

ACCURATE pose tracking in an unknown environment is a
fundamental issue in 3D scene perception and under-

standing [1]. Visual simultaneous localization and mapping
(SLAM) is a basic technique for pose tracking and 3D recon-
struction; it has received intense research interest from the
computer graphics, computer vision and mixed/aug-
mented/virtual reality communities. Observed scenes often
contain dynamic items such as moving people and objects,
so an accurate visual SLAM method which is efficient and
effective in such dynamic environments is urgently needed
as a basis for various applications in augmented/virtual
reality, robotics etc.

Although visual SLAM technology has made significant
progress in the past few decades [2], [3], most works focus on
static environments, and cannot estimate camera pose when
faced with dynamic situations. The critical challenge for
dynamic visual SLAM is that the presence of dynamic com-
ponents violates the data relationships assumed in static
SLAM, leading to poor pose estimation. Previous dynamic

visual SLAM approaches [4], [5] often utilize an RGB-D
depth camera and tackle the dynamic tracking problem fol-
lowing the DATMO—detection and tracking of moving
objects—scheme [6]. However, these DATMO-based meth-
ods suffer from drawbacks arising from assumptions made
about the moving objects e.g., the number of objects is prede-
termined, or the objects move slowly. Dynamic detection
methods using foreground/background segmentation [7],
dense scene flow [8] or static/dynamic edge point weight-
ing [9] estimate the camera pose solely from static entities by
detecting and eliminating the dynamic region. However,
since the determination of points or regions as static or
dynamic is based on only a few consecutive frames, moving
object detection in these methods is not robust, with a conse-
quent impact on the accuracy of camera pose estimation.
Recent online 3D reconstruction methods [10], [11], [12], [13]
aim to reconstruct dynamic 3D scenes. However, performing
static/dynamic determination with ICP-style registra-
tion [10], [12], [13] or 2DCNNs [11] is expensive both in com-
putation and memory, so they are unsuitable for use in a
light-weight system to track camera positions for online
applications inmixed and augmented reality, etc.

In this paper, we provide a more accurate and light-
weight dynamic visual SLAM method using an RGB-D sen-
sor, by analyzing frames over long-term timescales rather
than short-term ones. The key component of our RGB-D
SLAM system is a dynamic camera tracking module based
on accurate dynamic 3D landmark detection. Our key obser-
vation is that moving objects can be determined more reli-
ably using long-term observations rather than short-term
observations. Based on this key observation, we first esti-
mate the camera pose using an initial static/dynamic label-
ling from inlier/outlier determination with graph-cut (GC)
RANSAC [14]. Then we build a long-term consistent condi-
tional random field (LC-CRF) model to assist in 3D dynamic
landmark detection, by analyzing observations of static and
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dynamic landmarks over a long-term series of consecutive
frames. Solving the static-dynamic labeling problem with
the aid of the CRF provides highly accurate dynamic detec-
tion results. Using the results to eliminate the dynamic 3D
landmarks, we can estimate the camera pose with much
higher precision from the remaining static 3D landmarks.

Our LC-CRF based dynamic 3D landmark detection
method is efficient, leading to a light-weight SLAM system
for accurate 3D position tracking in dynamic environments.
We have evaluated our approach on two public datasets: (i)
the TUMRGB-D dynamic dataset [15] and (ii) the Bonn RGB-
Ddynamic dataset [13]; the latter has highly dynamic sequen-
ces. The results show that our approach typically outper-
forms state-of-the-art approaches, such as BaMVO [7] and
SPW [9]. We also propose a dynamic 3D scene reconstruction
method using our approach, which can provide good scene
reconstruction quality, and more accurate camera position
tracking results than other fusion-based dynamic reconstruc-
tion methods, e.g., MaskFusion [11]. In summary, this paper
makes the following contributions:

1) A reliable dynamic 3D landmark detection method
based on a long-term consistent conditional random
field, which constitutes the main component of our
dynamic camera tracking method, and

2) An efficient method for obtaining an initial estimate
of the camera pose for each frame, based on GC-
RANSAC filtering, which also provides strong static
versus dynamic priors for dynamic 3D landmark
detection.

2 RELATED WORK

Simultaneous localization and mapping has been studied
for more than four decades, with sub-topics of lidar SLAM,
visual SLAM, and sensor fusion SLAM according to the dif-
ferent sensors used. In this paper, we focus on visual
SLAM, which utilizes cameras (monocular, stereo, or RGB-
D) as the primary sensors for localization. In this section,
we discuss works particularly relevant to ours, and refer
readers to [2] for a more detailed overview of the progress
of the visual SLAM in the past few decades.

2.1 Static Visual SLAM

There has been much progress in visual SLAM techniques
since the pioneering work of MonoSLAM [16] in 2003. Cur-
rent visual SLAM approaches can be divided into two cate-
gories: feature-based visual SLAMmethods, which use sparse
feature points as landmarks for camera tracking, e.g.,
PTAM [17] and ORB-SLAM2 [18], and direct visual SLAM
methods, which directly use image intensity for camera
tracking, e.g., DTAM [19], SVO [20], LSD-SLAM [21], Infini-
TAM [22], PSM-SLAM [23] and DSO [24]. Direct visual
SLAM techniques have the advantage of allowing efficient
camera tracking without the time-consuming requirement
for 2D feature detection needed by feature-based visual
SLAM techniques, but they often suffer from lack of robust-
ness in changing light conditions. Besides, there are also
approaches to performing camera pose tracking by fusing
multiple sensors, such asmultiple cameras [25], inertial-cam-
eras [26] and laser-inertial-camera [27], or with the aid of
deep learning [28], [29].

Currently, most visual SLAM techniques assume a static
environment and do not work well in dynamic environments
which include human beings or other moving objects. Unlike
these methods, our approach aims to provide robust camera
tracking in dynamic scenarios. Like ORB-SLAM2 [18], it con-
tains three components. The novelty of our SLAM system lies
in the camera tracking subsystem, which in our case handles
scenes with dynamic objects. We integrate our dynamic 3D
landmark detection and elimination method into the camera
tracking component, allowing it to work more accurately in
dynamic environments.

2.2 Dynamic Visual SLAM

The detection and tracking of moving objects (DATMO)
proposed by Wang et al. [6] in 2006 inspired many dynamic
visual SLAM approaches to performing the camera pose
tracking by detecting moving objects with the aid of dense
scene flow [4] or object clustering [30], [31]. Kerl et al. [32]
presented the dense visual odometry (DVO) algorithm,
which uses a robust error function to reduce the influence
of moving objects on camera pose estimation. However,
since the error function is only computed across two conse-
cutive frames, the DVO algorithm can only work well for
slowly moving environments; rapidly changing ones cause
incorrect data associations. Recently, Kim et al. [7] intro-
duced a background-model-based dense-visual-odometry
(BaMVO) algorithm to estimate the background of each
frame and to perform camera pose estimation by eliminat-
ing foreground moving objects. Li et al. [9] provided a
dynamic RGB-D SLAM method which uses foreground
edge points to estimate the camera’s ego-motion. In this
method, every edge point is assigned with a static weight
which is used in an intensity-assisted iterative closest point
(IAICP) algorithm for ego-motion estimation; this reduces
the influence of dynamic components. Most of these meth-
ods detect dynamic components by analysis of only a few
consecutive frames, two frames in DVO [32] and just the
current frame in BaMVO [7] and Li et al. [9].

However, short-term analysis is not sufficiently informa-
tive for moving object detection, since many dynamic com-
ponents may remain static for short periods, which may
mislead short-term determination of static/dynamic status.

Fig. 1. The reconstructed scene for fr3/walking-halfsphere from the TUM
RBG-D dynamic dataset. As an accurate pose tracking technique for
dynamic environments, our efficient approach utilizing CRF-based long-
term consistency can estimate a camera trajectory (red) close to the
ground truth (green).
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If not properly detected and eliminated, such dynamic com-
ponents may be used as landmarks for later camera track-
ing, misleading downstream 3D to 2D data association, thus
lowering the accuracy of camera pose estimation.

In this paper, instead, we provide a dynamic component
detection method that uses long-term analysis. Distinguish-
ing static from dynamic components can be performed
more reliably using long-term observations. Based on this
insight, we build a long-term consistent conditional random
field using feature vectors derived from multiple visual
observation errors over a long period of consecutive frames.

2.3 Dynamic Reconstruction

3D reconstructionwith RGB-D cameras hasmademuch prog-
ress in past decades.Here,we only focus on 3D reconstruction
methods for dynamic scenes, and refer readers to the survey
paper [33] for the state-of-the-art in 3D reconstruction
approaches. Human movement is an important source of
dynamism in indoor scenes, and DynamicFusion [34] pro-
posed the first dense SLAM system to reconstruct dynamic
scenes with humans by accurately determining a volumetric
flow field that transforms the current scene into a canonical
frame. Subsequent works such as KillingFusion [35], Sobolev-
Fusion [36] extended the flow field with more accurate non-
rigidmotion estimationwithout templates or shape priors. To
make the non-rigid registration robust for fast motion,
Fusion4D [37] performs spatio-temporal coherent non-rigid
registration across multiple views. Guo et al. [38] utilized a
shading-based scheme for more accurate non-rigid registra-
tion, allowing the simultaneous reconstruction of a casual 3D
scene with both a detailed geometric model and surface
albedo. However, such non-rigid registration methods often
require huge memory to store the non-rigid transformation
flows, preventing their use for large indoor 3D scenes. Surfel-
Warp [39] estimates a deformation field based on surfels but
not truncated signed distance function (TSDF) voxels, which
avoids the high memory consumption. However, such meth-
ods still need to solve the non-rigid registration problem,with
real-time performance provided byGPU acceleration.

Recently, MaskFusion [11] proposed segmenting mov-
ing objects using a combination of 2D semantic detection
and geometric priors. StaticFusion (SF) [12] presented a
method for background reconstruction in dynamic envi-
ronments, by joint estimation of camera motion and scene
segmentation. Refusion [13] introduced direct tracking on
the TSDF to estimate the camera pose in dynamic scenes.
Bujanca et al. [40] presented a framework, FullFusion, for
dense semantic reconstruction in dynamic scenes, which
enables the incremental reconstruction of semantically-
annotated non-rigidly deforming objects; the RGB-D data
is divided into static and dynamic frames using a segmen-
tation module, and only static frames are used for camera
pose estimation.

Unlike these works, our approach detects dynamic land-
marks and estimates the camera motion from static parts,
and thus avoids solving the time-consuming non-rigid reg-
istration problem, or detecting/segmenting moving objects
with time-consuming camera pose estimation or the aid of a
2D CNN. With efficient and accurate static/dynamic identi-
fication, our lightweight SLAM system can accurately track
the camera pose in dynamic scenes.

Other works [41], [42] use deep networks such as Faster-
RCNN [43] to detect moving objects or segment scenes with
semantic parts from multiple camera views [44]. Although
such methods perform well, the problem of misclassifica-
tion still exists. Furthermore, the computational cost is
much higher due to the use of deep networks. We believe
that a geometric approach to dynamic component detection
is still not well explored and show that accuracy can be sig-
nificantly improved without the need for a deep network.

3 METHOD

3.1 System Overview

An overview of our approach is given in Fig. 2. Our system
has three components: camera tracking with dynamics, local
mapping and loop closing. Local mapping and loop closing
are performed as in ORB-SLAM2 [18]. Camera tracking with
dynamics aims to efficiently estimate the ego-motion between
frames by accurately detecting and eliminating dynamic 3D
landmarks. It contains twomain subcomponents.

The first subcomponent performs initial camera pose esti-
mation using GC-RANSAC (see Section 3.2). In this subcom-
ponent, we make an initial identification of static and
dynamic points using 2D to 2D matching with GC-RAN-
SAC, which is both efficient and accurate. The points deter-
mined as static are then used for initial camera pose
estimation. This initial static/dynamic identification is also
used in the dynamic 3D landmark detection step later.

The second subcomponent performs dynamic 3D landmark
detection using a long-term consistent CRF (see Section 3.3).
Based on the initial camera pose estimation, we build a con-
ditional random field with long-term consistency of observa-
tions (Fig. 3) and use it to more accurately identify static and
dynamic feature points. This allows us to eliminate the
dynamic points, and refine the camera pose estimation using
the static points.

3.2 Initial Camera Pose Estimation

For each incoming frame, we need to determine a reason-
able initial estimation of its camera pose. A general way to
do this is to estimate the ego-motion between two consecu-
tive frames by solving a perspective-n-point (PnP) prob-
lem [45] with 3D to 2D data association (as ORB-SLAM2
does). However, in dynamic scenarios, the 3D to 2D data
association will contain incorrect matches due to the exis-
tence of moving objects. To overcome this issue, feature
points on moving objects must be detected and eliminated,
leaving static feature points to enable an accurate estimation
of ego-motion.

In this step, we first roughly label landmarks as static or
dynamic, and then estimate the ego-motion using only the
static landmarks. As shown in Fig. 4, for an image pair
fKi;K

0
igwith fundamental matrix F ðKi;K

0
iÞ, a 3D landmark

Pi with its matching pair of 2D observations ðpi; p0iÞ is likely
to be static if p0 2 K0

i lies on the epipolar line l0i ¼ Fpi, and
otherwise be dynamic. Thus, we can formulate the static/
dynamic landmark identification problem as inlier/outlier
identification during fundamental matrix estimation using
the GC RANSAC algorithm [46]. Specifically, for a given set
M ¼ fðpi; p0iÞji ¼ 1; . . . ; ng of n 2D to 2D matching pairs, on
each iteration of RANSAC we label each matching pair as

DU ETAL.: ACCURATE DYNAMIC SLAM USING CRF-BASED LONG-TERM CONSISTENCY 1747

Authorized licensed use limited to: Tsinghua University. Downloaded on June 22,2023 at 04:11:59 UTC from IEEE Xplore.  Restrictions apply. 



an inlier or an outlier for the estimated fundamental matrix
F . This is performed by optimizing the energy function
EðLÞ ¼Pi BðLiÞ þ �

P
ði;jÞ2G RðLi; LjÞ with L ¼ fLi 2

f0; 1gji ¼ 1; . . . ; ng being a label assignment for the match-
ing pair setM, and G being a neighbor graph.

The unary term of the energy function is formulated as:

BðLiÞ ¼ K f pi; p
0
i; u

� �
; �

� �
if Li ¼ 0

1�K f pi; p
0
i; u

� �
; �

� �
if Li ¼ 1

�
; (1)

where u is the angular parameter for fundamental matrix F ,
and K s; �ð Þ ¼ expð�s2=ð2�2ÞÞ. Label Li ¼ 0 indicates an
inlier pair and 1 indicates an outlier pair. f pi; p

0
i; u

� �
is the dis-

tance from matching pair ðpi; p0iÞ to the fundamental matrix
F , and � is a threshold for inlier/outlier determination. The
pairwise energy term is defined as:

RðLi; LjÞ ¼
1 if Li 6¼ Lj

ðBðLiÞ þBðLjÞÞ=2 if Li ¼ Lj ¼ 0

1� ðBðLiÞ þBðLjÞÞ=2 if Li ¼ Lj ¼ 1:

8<
:

(2)

We empirically set � ¼ 0:14 and � ¼ 0:1. The total energy
can be efficiently optimized by the graph cut algorithm [47].
Fig. 5 shows an example of selecting static feature points
using this GC-RANSAC-based method, which is summa-
rized in Algorithm 1.

We later use the estimated fundamental matrix to derive
static/dynamic priors for accurate dynamic point detection
(see Section 3.3). Specifically, as shown in Fig. 4, for each 2D
matching pair ðpi; p0iÞ; pi 2 Ki; p

0
i 2 K0

i, where Ki and K0
i are

the current frame and the previous frame, respectively,
assuming Pi is the corresponding 3D landmark, and li 2
K; l0i 2 K0 are the corresponding epipolar lines li ¼ F>p0i ¼
ðAi;Bi; CiÞ, l0i ¼ Fpi ¼ ðA0

i; B
0
i; C

0
iÞ, we compute the distances

between the 2D feature point and the epipolar line as di ¼

Fig. 3. A static landmark has more consistent observations than a
dynamic one. M is a dynamic landmark which moves from M1 to M4

quickly; just a few frames observe the same location. Static landmark S
stays at the same location and is seen at the same position in more
frames. Re-projected points from static landmarks triangulate to a con-
sistent landmark, while re-projected points from dynamic landmarks tri-
angulate to different landmarks.

Fig. 4. Fundamental matrix and epipolar constraint. For a matched pair
ðpi; p0iÞ, where pi and p0i are related to the same 3D point Pi, the epipolar
constraint can be expressed as: p0>i Fpi ¼ 0, i.e. p0i lies in the epipolar line
l0i ¼ Fpi or pi lies in the epipolar line li ¼ F>p0i, where F is the fundamen-
tal matrix.

Fig. 2. Overview of our approach. To achieve accurate pose estimation in dynamic scenes, camera tracking is performed in two stages, from coarse
(initial camera pose estimation) to fine (dynamic 3D landmark detection). We first use GC-RANSAC to detect and remove dynamic feature points
and estimate an initial camera pose using the remaining static feature points. Then, we apply LC-CRF to relabel all landmarks, and refine the camera
pose using landmarks determined to be static.
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jli � pij=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2

i þB2
i

p
and d0i ¼ jl0i � p0ij=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A02

i þB02
i

p
. In general, if

landmark Pi is a static point, we expect the symmetric epi-
polar distance gi ¼ ðdi þ d0iÞ=2 to be small. We thus define a
likelihood of being static for each landmark Pi as P g

i ¼
expð�ðgi � mgÞ2=ð2s2

gÞÞ, where mg is the mean of gi. We then
use P g

i as the static/dynamic identification prior for each
landmark Pi for detecting dynamic points.

Algorithm 1. Initial Camera Pose Estimation

Input:
current frame fc, reference frame fr, previous frame fl

Output:
camera pose of current frame Tc, static likelihood P g

i for
each landmark Pi

1: Match features between frames fc and fr
2: Suggest static feature points by GC-RANSAC
3: for each static feature point pi in fc do
4: Find the corresponding 3D landmark Pi in fr
5: end for
6: Estimate ego-motion Tc on static landmarks by PnP
7: Project all landmarks seen by fl to fc
8: Estimate fundamental matrix F by GC-RANSAC
9: for each pair of feature points pi and p0i do
10: Compute the epipolar line: li ¼ F>p0i and l0i ¼ Fpi
11: Compute distances di and d0i
12: Compute the static/dynamic identification prior:
13: P g

i ¼ expð�ððdi þ d0iÞ=2� mgÞ2=ð2s2
gÞÞ

14: end for
15: return Tc

3.3 Dynamic Landmark Detection by CRF

After estimating the initial camera pose for the current frame,
we now identify the 3D landmarks as static or dynamic. As
shown in Fig. 3, the basis of our approach is that dynamic
points tend to have more inconsistent observations than

static points, especially over an extended time. Furthermore,
dynamic points often have larger photometric re-projection
errors between the re-projected point and the corresponding
2D feature point. Finally, we also note that points in the
neighborhood of a static or dynamic point also tend to be
static or dynamic, respectively. This key set of observations
motivates us to use a long-term consistent conditional ran-
domfield (LC-CRF) for dynamic point detection.

Specifically, we build the LC-CRF on the current detected
landmarks, with a fully connected graph [48] linking each
pair of landmarks. Each landmark Pi is assigned a label xi ¼
Li 2 f0; 1g (0 for static and 1 for dynamic). Our goal is to
find the optimal label assignment for all landmarks by mini-
mizing the Gibbs energy E defined on the LC-CRF:

EðXÞ ¼
X
i

cuðxiÞ þ
X
i< j

cpðxi; xjÞ: (3)

Unary Potential cuðxiÞ. During SLAM processing, each
landmark can be seen in several key-frames. We record the
corresponding 2D observations oij 2 R2, i.e., the 2D position
in key-frame j for each 3D landmark Pi. The photometric
re-projection error eij between Pi and oij is calculated. By
averaging the re-projection errors we obtain ai ¼ ðPj e

i
jÞ=bi

where bi is the total number of observations of Pi. As for the
static likelihood prior P g

i for the landmark Pi, we define
a second static likelihood from all observations: P b

i ¼
expð�ðbi � mbÞ2=ð2s2

bÞÞ, and a third one from the average
re-projection error: Pa

i ¼ expð�ðai � maÞ2=ð2s2
aÞÞ, where m:

and s: and represent mean and standard deviation of respec-
tive quantities.

For each landmark, we thus have three different esti-
mates of the likelihood that the landmark Pi is static: P

a
i , P

b
i

and P g
i . We compute a weighted average of these estimates

to give an overall likelihood that Pi is static: Ps
i ¼

�1P
a
i þ �2P

b
i þ �3P

g
i , where �1 þ �2 þ �3 ¼ 1. If Ps

i exceeds
a given threshold t, then Pi is initially labeled as static, and
associated with a static confidence c; otherwise, it is labeled
as dynamic, with static confidence 1� c. In our implementa-
tion, we set �1 ¼ �2 ¼ �3 ¼ 1=3. Following [49], the unary
potential is then defined as:

cuðxiÞ ¼ �log ðcÞIðPs
i > tÞ if xi ¼ 0

�log ð1� cÞIðPs
i > tÞ if xi ¼ 1

�
; (4)

where Ið�Þ is the indicator function.
Pairwise Potential cpðxi; xjÞ. We design the pairwise

potential to encourage consistent labeling between a land-
mark and its neighbors as follows:

cpðxi; xjÞ ¼ mðxi; xjÞ
X
m

vðmÞkðmÞðf i; f jÞ; (5)

where mðxi; xjÞ ¼ 1½xi 6¼xj� is a simple Potts model, f i and f j
are feature vectors for nodes i and j, and each kðmÞðf i; f jÞ is a
Gaussian kernel. Here we use two Gaussian kernels, an
observation kernel and a location kernel.

The observation kernel is based on the idea that landmarks
with similar average re-projection errors (a) and the number
of observations (b) are likely to be in the same class. A
dynamic landmark can be seen in the same position only for
a few key-frames, while a static landmark can be seen across

Fig. 5. Static feature points selection by the GC-RANSAC. Left: current
frame. Right: reference frame. We choose the 10th frame before the cur-
rent frame as the reference frame. After GC-RANSAC filtering, inliers are
almost static feature points, and are used for initial ego-motion estimation.
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many more key-frames over a long period. Similarly, static
landmarks have lower average re-projection errors than
dynamic landmarks. Thus, landmarks with different labels
should have apparent differences both in the number of
observations, and average re-projection error, so the obser-
vation kernel is defined as:

kð1Þðf i; f jÞ ¼ exp � ai � aj

�� ��2
2s2

a

� bi � bj

�� ��2
2s2

b

 !
: (6)

The location kernel is based on the idea that nearby 3D
landmarks are likely to belong to the same compact object
which is either static (e.g., a table) or dynamic (e.g., a per-
son), and hence be in the same class. Thus the location ker-
nel penalizes pairs of landmarks with different labels but
close to each other. This particularly helps to remove iso-
lated landmarks surrounded by landmarks with the oppo-
site label. As shown in Figs. 6a, 6b, some static feature
points in the person are surrounded by dynamic ones (left
image), and these are re-labeled as dynamic by LC-CRF
inference (right image). The location kernel function is
defined as:

kð2Þðf i; f jÞ ¼ exp � Pi � Pj

�� ��2
2s2

P

� pi � pj
�� ��2

2s2
p

 !
: (7)

The static/dynamic labeling problem represented by our
LC-CRF can be solved efficiently using a mean field approx-
imation method [48]. We show several examples illustrating
landmark labeling results for sequences from the TUM
RGB-D benchmark in Fig. 6. As can be seen, our method sig-
nificantly improves the results for static/dynamic point
labeling. Dynamic landmarks are accurately segmented
even for highly dynamic scenes. We refer the reader to the
supplementary video, for more results, which can be found
on the Computer Society Digital Library at http://doi.
ieeecomputersociety.org/10.1109/TVCG.2020.3028218..

After dynamic landmark detection, we discard dynamic
landmarks and use the remaining static ones to estimate a
more accurate camera pose for the current frame. These
steps are summarized in Algorithm 2.

Algorithm 2. Dynamic Landmark Detection and Accu-
rate Pose Estimation

Input:
landmarks seen by the current frame fc

Output:
accurate camera pose of the current frame T �

c

1: Initialize CRF graph
2: for Each landmark do
3: Compute the likelihood: Ps

i ¼ ðP a
i þ P b

i þ P g
i Þ=3

4: Compute unary potentials from Eq. (4)
5: end for
6: for Each pair of landmarks do
7: Compute pairwise potentials from Eqs. (6, 7)
8: end for
9: Determine the dynamic landmarks by CRF inference
10: Estimate pose T �

c from static landmarks
11: Return T �

c

4 EXPERIMENTS

4.1 Preliminaries

To evaluate the accuracy of the estimated camera pose, we
tested our method on the TUM [50] and Bonn [13] RGB-D
dynamic datasets. For the former, we selected 6 different
indoor dynamic sequences with moving people and violent
camera shaking; for the latter, we selected 20 sequences of
more complex dynamic motion in indoor scenes. The evalu-
ation uses two metrics to measure the accuracy between the
estimated camera poses and the ground truth: the absolute
trajectory error (ATE, measured in meters) and the relative
pose error (RPE, measured in meters per second), as defined
in [50]. All experiments were performed on a desktop com-
puter with a 3.6 GHz Intel Core i9-9900K CPU and 16 GB
RAM, without GPU acceleration.

4.2 Parameter Choice

The main parameters in our LC-CRF SLAM are those in the
unary and pairwise potentials in dynamic landmark detec-
tion. We performed an extensive study of these parameters
to determine appropriate settings.

4.2.1 Parameter Ranges

Wefirst grouped these parameters into 6 pairs of parameters,
and set the range for these parameter pairs as: fma; sag 2

Fig. 6. Landmark detection in dynamic scenes (a,b) and a static scene (c).
Left: Initial static/dynamic labeling. Right: final dynamic 3D landmark
detection results after LC-CRFoptimization. Green: Static points (psi � t).
Red: Dynamic points (psi < t).
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½1:1; 2:0� � ½0:2; 2:0�, fmb; sbg 2 ½3:8; 5:6� � ½1:3; 2:2� and
fmg ; sgg 2 ½0:1; 1:0� � ½0:1; 1:0�, fsP ; spg 2 ½0:1; 1:0� � ½10; 28�,
fw1; w2g 2 ½2; 20� � ½10; 55�, threshold and confidence ft; cg 2
½0:1; 1:0� � ½0:55; 1:00�. Since the first four parameter pairs
come from observations, e.g., a concerns re-projection errors,
we computed statistics for these observations on the test
sequences beforehand and empirically set the ranges for the
first four parameter pairs based on these statistics. The static
likelihood threshold twas set to be less than 1, i.e., in ½0:1; 1�,
and the static confidence c for static landmarks was set to be
over 0.5, i.e in ½0:55; 1:0�. The ranges for the weight parameter
pair fw1; w2g were set to penalize pairs of neighboring land-
markswith different labels.

4.2.2 Parameter Configuration

Since considering all parameter combinations is infeasible,
we choose to select the parameter configuration of the 6
parameter pairs sequentially with parameter cross valida-
tion. Specifically, for each parameter pair, we evenly sam-
pled n candidate values for the parameters and randomly
selected m pairs of values of the parameters for the other 5
parameter pairs. For each parameter configuration, we per-
formed LC-CRF SLAM on the six TUM RGB-D dynamic
sequences and calculated the average ATE to assess the
accuracy for this parameter configuration. In total, we thus
considered 6nm parameter configurations in the parameter
study. Typically, we set n ¼ 10� 10,m ¼ 10.

For each candidate value in each parameter pair, we fur-
ther computed the average of the averagedATE for itsm cor-
responding parameter configurations. In total, this led to 6n

averaged ATEs, as shown in Fig. 7. Typically, each pair of
parameters tends to have an optimal choice within itsm cor-
responding parameter configurations, independently of the
choice for the other parameters. The parameter study led to
the following parameter configuration: fma ¼ 1:7, sa ¼ 0:6g,
fmb ¼ 5:4; sb ¼ 1:5g, fmg ¼ 0:3; sg ¼ 0:2g, fsP ¼ 0:5; sp ¼
18g, fw1 ¼ 8, w2 ¼ 30g and ft ¼ 0:8; c ¼ 0:7g. These settings
achieved relatively small ATE errors across all parameter
configurations, and were used for all experiments in this
paper. The supplementary materials available online detail
the ATE errors for all 6nm parameter configurations.

4.3 Comparison With Unmodified ORB-SLAM

We first evaluate the performance of our dynamic camera
tracking compared with the original ORB-SLAM to demon-
strate the effectiveness of our dynamic point detection mod-
ule as a dynamic SLAM method. We tested our method on
the six dynamic sequences from the TMU RGB-D dataset,
and compared the resulting ATE and RPE with those of
ORB-SLAM in Table 1.

As can be seen, for highly dynamic sequences (thosewhose
names begin with ‘walking’, i.e. fast moving persons or cam-
era), our proposed method achieves significantly lower ATEs
and RPEs than ORB-SLAM. In the last two scenarios with less
dynamic contents, i.e., ‘sitting-xyz’ and ‘desk-with-person’,
our algorithm also achieves slightly better results.

4.4 Comparison Using TUM Dataset

To evaluate the effectiveness of our approach for camera
pose tracking of dynamic scenes, we compared our LC-CRF

Fig. 7. Averaged ATE on TUM RGB-D dynamic sequences for parameter validation. y- and x-axes represent (a) ma and sa, respectively; (b) mb and
sb, respectively; (c) mg and sg , respectively; (d) sP and sp, respectively; (e) w

1 and w2, respectively; (f) t and c, respectively. Red presents higher error,
blue lower.
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SLAM method with other state-of-the-art dynamic SLAM
systems, i.e. dense visual odometry (DVO) [32], back-
ground-model-based dense-visual-odometry (BaMVO) [7],
and static point weighting (SPW) [9], as well as dynamic
fusion methods: ReFusion(RF) [13], StaticFusion(SF) [12],
MaskFusion(MF) [11] and FullFusion(FF) [40], using the
standard TUM RGB-D dynamic dataset. To make a fair
comparison, we used the results produced by publicly
released code or reported in the original paper. Table 1
gives the corresponding ATE and translational RPE accu-
racy results for the various dynamic SLAM systems. Due to
a lack of public source code or correct code, we do not show
results for FullFusion with ‘fr3/walking-rpy’ and ‘fr2/desk-
with-person’ sequences and only report the RPE for BaMVO
from the original paper. Averages and standard deviations
of accuracy results for every single sequence and for all
sequences are also calculated (BaMVO, DVO, SPW and Full-
fusion do not report the standard deviation in their original
papers). As shown in Table 1, our full LC-CRF SLAM
achieves an average ATE error of 0.030 m (with standard
deviation 0.021 m) and an average RPE error of 0.036 m/s
(with standard deviation 0.026 m/s), which is significantly
lower than methods like DVO, RF, SF, MF and FF, and bet-
ter than the SPW method. For all sequences, our LC-CRF
SLAM achieves almost the lowest ATE and RPE errors,
except for the ‘fr2/desk-with-person’ sequence. In this
almost static scene, a few static landmarks are labeled as
dynamic by the GC-RANSAC filter with its standard
parameter settings, degrading the accuracy of the initial
pose estimation.

4.5 Comparison Using Bonn Dataset

To further evaluate the accuracy of camera pose tracking,
we compared our approach with three start-of-the-art dense
reconstruction methods: ReFusion (RF) [13], StaticFusion
(SF) [12] and MaskFusion (MF) [11], on the Bonn RGB-D
dynamic dataset. Results were obtained by running avail-
able open source implementations for each method. Table 2
shows the statistics of ATE and RPE errors for both single
sequence and all sequences. Our method outperforms the

others in most sequences (17 of 20) in terms of ATE, and
achieves the lowest RPE for half of the sequences.

The ATE between estimated trajectories and ground-
truth is further visualized in Fig. 8. As can be seen clearly,
the trajectories estimated by our LC-CRF SLAM are much
closer to the real trajectories than those provided by RF, SF
and MF. This confirms again that long-term consistency is
effective for dynamic landmark detection in such highly
dynamic scenes using only sparse feature points.

4.6 Effectiveness of GC-RANSAC Filter

We also evaluated the performance of the initial camera pose
estimation using the GC-RANSAC filter from Section 3.2.
We built a SLAM systemwithout the initial camera pose esti-
mation component by just assigning an initial camera pose
using velocity prediction like ORB-SLAM. Consequently,
the unary and pairwise potentials also do not contain the ini-
tial static/dynamic priors for the LC-CRF for the dynamic
landmark detection. We compared such a system (without
the GC-RANSAC filter) with our full LC-CRF SLAM system
by evaluating the ATE and RPE of the six dynamic sequences
of the TUMRGB-D dataset.

Table 1 includes ATE results for our LC-CRF SLAMwith
and without the GC-RANSAC filter. Without the GC-RAN-
SAC filter, the ATEs are significantly greater for highly
dynamic sequences such as fr3/walking-xyz and fr3/walking-
halfsphere. For less dynamic sequences, the ATEs are slightly
increased. This shows that GC-RANSAC plays an effective
role for camera pose estimation, especially in highly dynamic
scenarios.

4.7 Dynamic Dense Reconstruction

To further evaluate the benefit of static/dynamic 3D land-
mark detection and intuitively show the accuracy of camera
pose determined by our method, we considered a simple
dense reconstruction method based on our dynamic RGB-D
SLAM. Specifically, like MaskFusion [11], we recognise the
dynamic regions, e.g., people, using the mask predicted by
Mask R-CNN [51] as well as the dynamic points determined

TABLE 1
ATE (m) and RPE (m/s, Translational RPE-RMSE) of Different Methods on TUM RGB-D Dynamic Datasets

* only 4 sequences are considered for FullFusion (FF).
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by registration errors between the current frame and the
previous one; finally we fuse the remaining static points
using the camera poses tracked by our RGB-D SLAM
method.

Example dense reconstruction results are shown in Figs. 1
and 9. As can be seen clearly, dynamic regions, e.g., moving
people, are effectively removed from the reconstructed
scenes. These results demonstrate that our method provides

TABLE 2
ATE (m) and RPE (m/s, Translational RPE-RSME) for Different Methods on Bonn RGB-D Dynamic Datasets

Sequence

ATE t.RPE

RF SF MF ours RF SF MF ours

Mean (Std) Mean (Std) Mean (Std) Mean (Std) Mean (Std) Mean (Std) Mean (Std) Mean (Std)

balloon 0.205 (0.126) 0.264 (0.095) 0.165 (0.073) 0.027 (0.014) 0.576 (0.370) 0.585 (0.372) 0.509 (0.317) 0.612 (0.373)
balloon2 0.195 (0.110) 0.250 (0.120) 0.114 (0.049) 0.024 (0.011) 0.540 (0.301) 0.534 (0.287) 0.499 (0.286) 0.541 (0.275)
balloon-tracking 0.445 (0.237) 0.202 (0.147) 0.194 (0.135) 0.025 (0.019) 1.031 (0.587) 0.900 (0.565) 0.991 (0.614) 0.965 (0.575)
balloon-tracking2 0.277 (0.137) 0.286 (0.098) 0.238 (0.097) 0.045 (0.023) 1.059 (0.687) 0.949 (0.624) 0.937 (0.600) 0.935 (0.596)
crowd 0.114 (0.062) 0.132 (0.081) 0.473 (0.161) 0.019 (0.012) 0.198 (0.104) 0.211 (0.128) 0.633 (0.400) 0.238 (0.170)
crowd2 0.192 (0.100) 0.193 (0.114) 0.653 (0.282) 0.031 (0.033) 0.315 (0.178) 0.313 (0.184) 0.854 (0.618) 0.199 (0.103)
crowd3 0.115 (0.067) 0.146 (0.094) 0.341 (0.108) 0.023 (0.015) 0.223 (0.125) 0.266 (0.153) 0.503 (0.306) 0.194 (0.109)
kidnapping-box 0.169 (0.078) 0.252 (0.097) 0.200 (0.106) 0.023 (0.015) 0.886 (0.754) 0.853 (0.715) 0.840 (0.683) 1.001 (0.801)
kidnapping-box2 0.132 (0.057) 0.186 (0.078) 0.182 (0.076) 0.020 (0.010) 1.077 (0.752) 1.030 (0.729) 1.027 (0.724) 1.184 (0.798)
moving-no-box 0.079 (0.035) 0.087 (0.046) 0.120 (0.050) 0.018 (0.009) 0.939 (0.584) 0.939 (0.583) 0.947 (0.604) 0.936 (0.586)
moving-no-box2 0.186 (0.092) 0.224 (0.110) 0.193 (0.084) 0.038 (0.019) 1.287 (0.791) 1.267 (0.782) 1.252 (0.765) 1.399 (0.850)
moving-o-box 0.319 (0.134) 0.376 (0.125) 0.216 (0.066) 0.253 (0.064) 1.274 (0.839) 0.894 (0.546) 0.847 (0.520) 1.158 (0.772)
moving-o-box2 0.608 (0.248) 0.242 (0.116) 0.298 (0.133) 0.341 (0.259) 1.523 (1.145) 0.649 (0.412) 0.576 (0.378) 1.143 (0.932)
person-tracking 0.354 (0.125) 0.390 (0.137) 0.301 (0.128) 0.035 (0.013) 1.209 (0.684) 1.197 (0.678) 1.312 (0.857) 1.193 (0.676)
person-tracking2 0.494 (0.235) 0.497 (0.214) 0.220 (0.069) 0.040 (0.014) 1.165 (0.681) 1.192 (0.701) 1.267 (0.837) 1.297 (0.892)
placing-no-box 0.109 (0.056) 0.133 (0.086) 0.325 (0.120) 0.014 (0.009) 0.355 (0.240) 0.361 (0.240) 0.598 (0.332) 0.333 (0.192)
placing-no-box2 0.121 (0.074) 0.209 (0.071) 0.153 (0.067) 0.016 (0.011) 0.282 (0.187) 0.361 (0.226) 0.330 (0.192) 0.271 (0.199)
placing-no-box3 0.181 (0.076) 0.219 (0.097) 0.156 (0.058) 0.036 (0.023) 0.511 (0.342) 0.534 (0.365) 0.491 (0.358) 0.482 (0.339)
placing-o-box 0.605 (0.365) 0.261 (0.107) 0.424 (0.144) 0.320 (0.095) 1.180 (0.862) 0.528 (0.285) 0.791 (0.443) 0.505 (0.257)
removing-no-box 0.050 (0.028) 0.061 (0.040) 0.058 (0.040) 0.013 (0.006) 0.262 (0.150) 0.274 (0.163) 0.263 (0.157) 0.240 (0.126)

Mean (Std)-all 0.248 (0.170) 0.231 (0.104) 0.251 (0.140) 0.068 (0.103) 0.795 (0.432) 0.692 (0.342) 0.773 (0.307) 0.741 (0.419)
Max (Min)-all 0.608 (0.050) 0.497 (0.061) 0.653 (0.058) 0.341 (0.013) 1.523 (1.198) 1.267 (0.211) 1.312 (0.263) 1.399 (0.194)

Fig. 8. Demonstration of the camera trajectories (blue) estimated by approaches ReFusion, StaticFusion, MaskFusion and our LC-CRF method
(each column), along with the ground truth trajectories (black) of sequences (from left to right) fr3/walking-xyz, fr3/walking-halfsphere (from the TUM
dataset), balloon, and kidnapping-box (from the Bonn dataset). The red segments connecting the corresponding positions between ground truth tra-
jectories and estimated trajectories represent the ATE.
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accurate camera poses and can produce good 3D reconstruc-
tion results for dynamic scenes.

4.8 Impact of Dynamic Objects

Clearly, the accuracy of camera pose estimation for a
dynamic scene will be affected by the presence of human
beings and other moving objects. To quantitatively evaluate
the impact of dynamic objects on the accuracy of pose esti-
mation, we analyzed the relationship between the propor-
tion of dynamic content in the scene and camera pose
estimation error by computing the ATE and RPE for each
frame, using the TUM dynamic dataset. Here we define the
ratio of dynamic objects to be rðkÞ ¼ ndðkÞ=nðkÞ, where ndðkÞ
denotes the number of dynamic feature points in frame fk
and nðkÞ is the total number of feature points in that frame.

Fig. 10 shows the ATE and translational RPEwith respect
to the dynamic ratio. These errors increase with a greater
proportion of dynamic feature points. As expected, the cam-
era poses estimated by our approach get worse with increas-
ing amounts of dynamic content. Our approach can still
handle significant amounts of dynamic content (up to about
50 percent) while keeping the ATE and translational RPE
under about 0.2m and 0.2m/s, respectively.

4.9 Timings

Our approach has twomain processes, i.e., initial pose estima-
tion and dynamic landmark detection. The time taken by
these processes was recorded for both TUM and Bonn RGB-D
sequences and listed in Table 3. While the initial pose estima-
tion is expensive due to the time-consuming GC-RANSAC,

our method still achieves a near-real-time processing rate: 16
and 13 fps for TUM and Bonn RGB-D sequences, respectively.
These experiments were performed on a CPU without GPU
acceleration.

4.10 Discussion and Limitations

One of the main benefits of our approach comes from the
unary and pairwise potentials used in dynamic landmark
detection, which leverages information from widely sepa-
rated frames, not just consecutive frames. The static likeli-
hood is estimated for every landmark for every frame (see
Section 3.3) of the whole video sequence, which implicitly

Fig. 9. The reconstructed point clouds for two scenes (top: fr3/walking-
xyz, bottom: fr3/walking-static) from TUM RGB-D dataset.

Fig. 10. Variation in ATE and RPE translation error with differing propor-
tions of dynamic content. x-axis: percentage of dynamic feature points
compared to all feature points. y-axis: Red: ATE translation error. Blue:
RPE translation error.

TABLE 3
Time Taken for Each Step of the Tracking Thread (s)

Sequence #Fr. IPE DLD Total FPS

fr3/walking-xyz 859 26.50 3.18 47.68 18.02
fr3/walking-halfsphere 1067 34.75 3.92 65.68 16.24
fr3/walking-static 743 17.71 4.81 40.31 18.43
fr3/walking-rpy 910 28.05 3.13 53.23 17.10
fr3/sitting-xyz 1261 60.81 4.42 92.56 13.62
fr2/desk-with-person 4067 149.40 13.44 241.82 16.82

balloon 439 12.74 1.91 25.40 17.28
balloon2 469 14.03 2.39 27.47 17.07
balloon-tracking 590 32.84 1.96 48.04 12.28
balloon-tracking2 451 17.81 1.74 26.39 17.09
crowd 928 32.61 3.91 58.51 15.86
crowd2 895 27.47 5.80 58.43 15.32
crowd3 854 32.43 5.38 59.41 14.38
kidnapping-box 1091 60.09 5.67 81.80 13.34
kidnapping-box2 1294 72.67 6.95 92.16 14.04
moving-no-box 778 39.46 3.52 61.33 12.69
moving-no-box2 937 61.83 4.81 80.58 11.63
moving-o-box 590 34.32 1.71 48.91 12.06
moving-o-box2 783 45.91 2.80 66.90 11.70
person-tracking 580 20.07 1.77 33.39 17.37
person-tracking2 567 26.25 1.62 41.27 13.74
placing-no-box 721 40.01 3.18 54.10 13.33
placing-no-box2 677 32.94 3.69 45.60 14.85
placing-no-box3 662 34.47 3.02 42.55 15.56
placing-o-box 998 54.48 2.95 68.36 14.60
removing-no-box 494 21.60 2.40 31.21 15.83

#Fr.: number of frames, IPE: initial pose estimation, DLD: dynamic landmark
detection.
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enforces long-term consistency in the unary potential com-
putation. Also, the observation kernel used in the pairwise
potential computation leverages the total number of observa-
tions, again providing a feature across long spans of frames.

Our approach still suffers from four main drawbacks.
First, wrong static/dynamic landmark detection occurs,
influencing the final camera pose estimation. This happens
mainly in highly dynamic scenes with insufficient reliable
static landmarks for camera pose estimation. Another cause
arises from the epipolar line constraints used in the GC-
RANSAC filter. Some dynamic objects may move along the
direction of the epipolar line between consecutive frames,
leading to incorrect initial static/dynamic labeling. One
possible solution to this problem may be introducing more
structural prior hints, such as planarity constraints.

Second, it is not as effective for almost static scenes,
mainly because it may wrongly label static feature points as
dynamic, thereby lowering camera pose estimation accu-
racy. One possible solution is to allow the user to choose
whether to use the dynamic object detection module. If it is
turned off, the final pose estimate is mainly determined by
the process of initial camera pose estimation.

Third, as shown in Fig. 11, our approach does not perform
very well for objects which are stationary for a long time
before starting to move, since our approach mainly relies on
geometric rules to identify static/dynamic feature points
without understanding the scene. This could be overcome by
temporally matching object arrangements (including object
locations and spatial relationships) for the whole scene, to
infer when previously static objects start tomove [52].

Lastly, initial ego-motion estimation depends on GC-
RANSAC, a randomized algorithm. Thus the final result of
dynamic landmark detection is inherently somewhat ran-
dom. Nevertheless, our method is still typically superior to
many existing methods. We hope to explore non-random
initial ego-motion estimation methods to ensure that the
system works robustly in various scenarios.

5 CONCLUSION

This paper has presented our LC-CRF SLAM system for
accurate pose estimation and effective dynamic point detec-
tion. To reduce the impact of dynamic points on pose esti-
mation, we first compute an initial pose using GC-RANSAC
and assign each landmark a static/dynamic prior. Then, we
use a CRF with appropriate unary and pairwise potentials
to label each landmark as static or dynamic. We have shown

that our proposed LC-CRF SLAM is significantly more accu-
rate than existing methods for the highly dynamic examples
in the public TUM RGB-D dataset and Bonn RGB-D dataset,
and that it can be incorporated into the dynamic 3D recon-
struction. In the future, we hope to explore potential AR/
VR applications for dynamic scenarios, taking advantage of
the static/dynamic information identified by our light-
weight camera pose tracking.
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